17. 3D Vector Graphics

Module GL

Description

Not implemented OpenGL methods:

glAreTexturesResident
glBitmap
glBlendColorEXT
glCallLists
glColorPointer
glDeleteTextures
glDrawElements
glEdgeFlagPointer
glEdgeFlagv
glEvalMesh
glFeedbackBuffer
glGenTextures
glGetBooleanv
glGetClipPlane
glGetDoublev
glGetFloatv
glGetIntegerv
glGetLight
glGetMap
glGetMaterial
glGetPixelMap
glGetPointerv
glGetPolygonStipple
glGetTexEnv
glGetTexGen
glGetTexImage
glGetTexLevelParameter
glGetTexParameter
glIndexPointer
glInterleavedArrays
glMap1
glMap2
glMapGrid
glNormalPointer
glPixelMap
glPixelStore
glPixelTransfer
glPolygonStipple
glPrioritizeTextures
glReadPixels
glRect
glSelectBuffer
glTexCoordPointer
glTexImage1D
glTexSubImage1D
glVertexPointer


Constant GL_2D

constant int GL.GL_2D

Description

Used in glFeedbackBuffer


Constant GL_2_BYTES

constant int GL.GL_2_BYTES

Description

Used in glCallLists


Constant GL_3D

constant int GL.GL_3D

Description

Used in glFeedbackBuffer


Constant GL_3D_COLOR

constant int GL.GL_3D_COLOR

Description

Used in glFeedbackBuffer


Constant GL_3D_COLOR_TEXTURE

constant int GL.GL_3D_COLOR_TEXTURE

Description

Used in glFeedbackBuffer


Constant GL_3_BYTES

constant int GL.GL_3_BYTES

Description

Used in glCallLists


Constant GL_4D_COLOR_TEXTURE

constant int GL.GL_4D_COLOR_TEXTURE

Description

Used in glFeedbackBuffer


Constant GL_4_BYTES

constant int GL.GL_4_BYTES

Description

Used in glCallLists


Constant GL_ABGR_EXT

constant int GL.GL_ABGR_EXT


Constant GL_ACCUM

constant int GL.GL_ACCUM

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv, glAccum, glGetDoublev and glClear


Constant GL_ACCUM_ALPHA_BITS

constant int GL.GL_ACCUM_ALPHA_BITS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glAccum and glGetDoublev


Constant GL_ACCUM_BLUE_BITS

constant int GL.GL_ACCUM_BLUE_BITS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glAccum and glGetDoublev


Constant GL_ACCUM_BUFFER_BIT

constant int GL.GL_ACCUM_BUFFER_BIT

Description

Used in glPopAttrib, glPushAttrib and glClear


Constant GL_ACCUM_CLEAR_VALUE

constant int GL.GL_ACCUM_CLEAR_VALUE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_ACCUM_GREEN_BITS

constant int GL.GL_ACCUM_GREEN_BITS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glAccum and glGetDoublev


Constant GL_ACCUM_RED_BITS

constant int GL.GL_ACCUM_RED_BITS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glAccum and glGetDoublev


Constant GL_ADD

constant int GL.GL_ADD

Description

Used in glAccum


Constant GL_ALL_ATTRIB_BITS

constant int GL.GL_ALL_ATTRIB_BITS

Description

Used in glPopAttrib and glPushAttrib


Constant GL_ALPHA

constant int GL.GL_ALPHA

Description

Used in glIsEnabled, glTexEnv, glGetIntegerv, glDrawPixels, glDisable, glCopyTexImage1D, glTexSubImage2D, glPopAttrib, glEnable, glPixelTransfer, glGetBooleanv, glGetTexImage, glPushAttrib, glGetFloatv, glGetDoublev, glAlphaFunc, glReadPixels, glCopyTexImage2D, glTexImage2D, glTexSubImage1D and glTexImage1D


Constant GL_ALPHA12

constant int GL.GL_ALPHA12

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_ALPHA16

constant int GL.GL_ALPHA16

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_ALPHA4

constant int GL.GL_ALPHA4

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_ALPHA8

constant int GL.GL_ALPHA8

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_ALPHA_BIAS

constant int GL.GL_ALPHA_BIAS

Description

Used in glGetIntegerv, glPopAttrib, glPixelTransfer, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_ALPHA_BITS

constant int GL.GL_ALPHA_BITS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_ALPHA_SCALE

constant int GL.GL_ALPHA_SCALE

Description

Used in glGetIntegerv, glPopAttrib, glPixelTransfer, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_ALPHA_TEST

constant int GL.GL_ALPHA_TEST

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glAlphaFunc


Constant GL_ALPHA_TEST_FUNC

constant int GL.GL_ALPHA_TEST_FUNC

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_ALPHA_TEST_REF

constant int GL.GL_ALPHA_TEST_REF

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_ALWAYS

constant int GL.GL_ALWAYS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev, glAlphaFunc, glDepthFunc and glStencilFunc


Constant GL_AMBIENT

constant int GL.GL_AMBIENT

Description

Used in glGetIntegerv, glColorMaterial, glGetLight, glGetBooleanv, glGetFloatv, glMaterial, glGetDoublev, glLight and glGetMaterial


Constant GL_AMBIENT_AND_DIFFUSE

constant int GL.GL_AMBIENT_AND_DIFFUSE

Description

Used in glGetIntegerv, glColorMaterial, glGetBooleanv, glGetFloatv, glMaterial and glGetDoublev


Constant GL_AND

constant int GL.GL_AND

Description

Used in glLogicOp


Constant GL_AND_INVERTED

constant int GL.GL_AND_INVERTED

Description

Used in glLogicOp


Constant GL_AND_REVERSE

constant int GL.GL_AND_REVERSE

Description

Used in glLogicOp


Constant GL_ATTRIB_STACK_DEPTH

constant int GL.GL_ATTRIB_STACK_DEPTH

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_AUTO_NORMAL

constant int GL.GL_AUTO_NORMAL

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glEvalCoord


Constant GL_AUX0

constant int GL.GL_AUX0

Description

Used in glReadBuffer


Constant GL_AUX1

constant int GL.GL_AUX1


Constant GL_AUX2

constant int GL.GL_AUX2


Constant GL_AUX3

constant int GL.GL_AUX3

Description

Used in glReadBuffer


Constant GL_AUX_BUFFERS

constant int GL.GL_AUX_BUFFERS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glReadBuffer, glGetDoublev and glDrawBuffer


Constant GL_AVERAGE_EXT

constant int GL.GL_AVERAGE_EXT


Constant GL_BACK

constant int GL.GL_BACK

Description

Used in glGetIntegerv, glColorMaterial, glCullFace, glPolygonMode, glGetBooleanv, glGetFloatv, glReadBuffer, glMaterial, glGetDoublev, glDrawBuffer and glGetMaterial


Constant GL_BACK_LEFT

constant int GL.GL_BACK_LEFT

Description

Used in glReadBuffer and glDrawBuffer


Constant GL_BACK_RIGHT

constant int GL.GL_BACK_RIGHT

Description

Used in glReadBuffer and glDrawBuffer


Constant GL_BGR

constant int GL.GL_BGR


Constant GL_BGRA

constant int GL.GL_BGRA


Constant GL_BITMAP

constant int GL.GL_BITMAP

Description

Used in glDrawPixels, glTexSubImage2D, glGetTexImage, glReadPixels, glTexImage2D, glFeedbackBuffer, glGetPolygonStipple, glBitmap, glTexSubImage1D, glTexImage1D and glPolygonStipple


Constant GL_BITMAP_TOKEN

constant int GL.GL_BITMAP_TOKEN

Description

Used in glFeedbackBuffer


Constant GL_BLEND

constant int GL.GL_BLEND

Description

Used in glIsEnabled, glTexEnv, glGetIntegerv, glBlendColorEXT, glBlendFunc, glDisable, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_BLEND_COLOR_EXT

constant int GL.GL_BLEND_COLOR_EXT

Description

Used in glGetIntegerv, glBlendColorEXT, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_BLEND_DST

constant int GL.GL_BLEND_DST

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_BLEND_EQUATION_EXT

constant int GL.GL_BLEND_EQUATION_EXT

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_BLEND_SRC

constant int GL.GL_BLEND_SRC

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_BLUE

constant int GL.GL_BLUE

Description

Used in glGetIntegerv, glDrawPixels, glTexSubImage2D, glPopAttrib, glPixelTransfer, glGetBooleanv, glGetTexImage, glPushAttrib, glGetFloatv, glGetDoublev, glReadPixels, glTexImage2D, glTexSubImage1D and glTexImage1D


Constant GL_BLUE_BIAS

constant int GL.GL_BLUE_BIAS

Description

Used in glGetIntegerv, glPopAttrib, glPixelTransfer, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_BLUE_BITS

constant int GL.GL_BLUE_BITS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_BLUE_SCALE

constant int GL.GL_BLUE_SCALE

Description

Used in glGetIntegerv, glPopAttrib, glPixelTransfer, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_BYTE

constant int GL.GL_BYTE

Description

Used in glDrawPixels, glColorPointer, glTexSubImage2D, glNormalPointer, glGetTexImage, glCallLists, glReadPixels, glTexImage2D, glTexSubImage1D and glTexImage1D


Constant GL_C3F_V3F

constant int GL.GL_C3F_V3F

Description

Used in glInterleavedArrays


Constant GL_C4F_N3F_V3F

constant int GL.GL_C4F_N3F_V3F

Description

Used in glInterleavedArrays


Constant GL_C4UB_V2F

constant int GL.GL_C4UB_V2F

Description

Used in glInterleavedArrays


Constant GL_C4UB_V3F

constant int GL.GL_C4UB_V3F

Description

Used in glInterleavedArrays


Constant GL_CCW

constant int GL.GL_CCW

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glFrontFace


Constant GL_CLAMP

constant int GL.GL_CLAMP

Description

Used in glTexParameter


Constant GL_CLEAR

constant int GL.GL_CLEAR

Description

Used in glLogicOp


Constant GL_CLIENT_ALL_ATTRIB_BITS

constant int GL.GL_CLIENT_ALL_ATTRIB_BITS

Description

Used in glPopClientAttrib and glPushClientAttrib


Constant GL_CLIENT_ATTRIB_STACK_DEPTH

constant int GL.GL_CLIENT_ATTRIB_STACK_DEPTH

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_CLIENT_PIXEL_STORE_BIT

constant int GL.GL_CLIENT_PIXEL_STORE_BIT

Description

Used in glPopClientAttrib and glPushClientAttrib


Constant GL_CLIENT_VERTEX_ARRAY_BIT

constant int GL.GL_CLIENT_VERTEX_ARRAY_BIT

Description

Used in glPopClientAttrib and glPushClientAttrib


Constant GL_CLIP_PLANE0

constant int GL.GL_CLIP_PLANE0


Constant GL_CLIP_PLANE1

constant int GL.GL_CLIP_PLANE1


Constant GL_CLIP_PLANE2

constant int GL.GL_CLIP_PLANE2


Constant GL_CLIP_PLANE3

constant int GL.GL_CLIP_PLANE3


Constant GL_CLIP_PLANE4

constant int GL.GL_CLIP_PLANE4


Constant GL_CLIP_PLANE5

constant int GL.GL_CLIP_PLANE5


Constant GL_COEFF

constant int GL.GL_COEFF

Description

Used in glGetMap


Constant GL_COLOR

constant int GL.GL_COLOR

Description

Used in glIsEnabled, glGetIntegerv, glDrawElements, glDrawArrays, glColorMaterial, glDrawPixels, glDisable, glColorPointer, glTexSubImage2D, glPopAttrib, glEnable, glEnableClientState, glGetPointerv, glPixelTransfer, glLogicOp, glGetBooleanv, glGetTexImage, glPushAttrib, glGetFloatv, glMaterial, glGetDoublev, glReadPixels, glTexImage2D, glGetPolygonStipple, glBitmap, glCopyPixels, glLightModel, glDisableClientState, glTexSubImage1D, glTexImage1D, glGetMaterial, glClear and glPolygonStipple


Constant GL_COLOR_ARRAY

constant int GL.GL_COLOR_ARRAY

Description

Used in glIsEnabled, glGetIntegerv, glDrawElements, glDrawArrays, glColorPointer, glEnableClientState, glGetPointerv, glGetBooleanv, glGetFloatv, glGetDoublev and glDisableClientState


Constant GL_COLOR_ARRAY_POINTER

constant int GL.GL_COLOR_ARRAY_POINTER

Description

Used in glGetPointerv


Constant GL_COLOR_ARRAY_SIZE

constant int GL.GL_COLOR_ARRAY_SIZE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_COLOR_ARRAY_STRIDE

constant int GL.GL_COLOR_ARRAY_STRIDE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_COLOR_ARRAY_TYPE

constant int GL.GL_COLOR_ARRAY_TYPE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_COLOR_BUFFER_BIT

constant int GL.GL_COLOR_BUFFER_BIT

Description

Used in glPopAttrib, glPushAttrib and glClear


Constant GL_COLOR_CLEAR_VALUE

constant int GL.GL_COLOR_CLEAR_VALUE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_COLOR_INDEX

constant int GL.GL_COLOR_INDEX

Description

Used in glDrawPixels, glTexSubImage2D, glPixelTransfer, glGetTexImage, glMaterial, glReadPixels, glTexImage2D, glGetPolygonStipple, glBitmap, glLightModel, glTexSubImage1D, glTexImage1D, glGetMaterial and glPolygonStipple


Constant GL_COLOR_INDEXES

constant int GL.GL_COLOR_INDEXES

Description

Used in glMaterial, glLightModel and glGetMaterial


Constant GL_COLOR_LOGIC_OP

constant int GL.GL_COLOR_LOGIC_OP

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glLogicOp, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_COLOR_MATERIAL

constant int GL.GL_COLOR_MATERIAL

Description

Used in glIsEnabled, glGetIntegerv, glColorMaterial, glDisable, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_COLOR_MATERIAL_FACE

constant int GL.GL_COLOR_MATERIAL_FACE

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_COLOR_MATERIAL_PARAMETER

constant int GL.GL_COLOR_MATERIAL_PARAMETER

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_COLOR_TABLE_ALPHA_SIZE_SGI

constant int GL.GL_COLOR_TABLE_ALPHA_SIZE_SGI


Constant GL_COLOR_TABLE_BIAS_SGI

constant int GL.GL_COLOR_TABLE_BIAS_SGI


Constant GL_COLOR_TABLE_BLUE_SIZE_SGI

constant int GL.GL_COLOR_TABLE_BLUE_SIZE_SGI


Constant GL_COLOR_TABLE_FORMAT_SGI

constant int GL.GL_COLOR_TABLE_FORMAT_SGI


Constant GL_COLOR_TABLE_GREEN_SIZE_SGI

constant int GL.GL_COLOR_TABLE_GREEN_SIZE_SGI


Constant GL_COLOR_TABLE_INTENSITY_SIZE_SGI

constant int GL.GL_COLOR_TABLE_INTENSITY_SIZE_SGI


Constant GL_COLOR_TABLE_LUMINANCE_SIZE_SGI

constant int GL.GL_COLOR_TABLE_LUMINANCE_SIZE_SGI


Constant GL_COLOR_TABLE_RED_SIZE_SGI

constant int GL.GL_COLOR_TABLE_RED_SIZE_SGI


Constant GL_COLOR_TABLE_SCALE_SGI

constant int GL.GL_COLOR_TABLE_SCALE_SGI


Constant GL_COLOR_TABLE_SGI

constant int GL.GL_COLOR_TABLE_SGI


Constant GL_COLOR_TABLE_WIDTH_SGI

constant int GL.GL_COLOR_TABLE_WIDTH_SGI


Constant GL_COLOR_WRITEMASK

constant int GL.GL_COLOR_WRITEMASK

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_COMPILE

constant int GL.GL_COMPILE

Description

Used in glNewList and glEndList


Constant GL_COMPILE_AND_EXECUTE

constant int GL.GL_COMPILE_AND_EXECUTE

Description

Used in glNewList and glEndList


Constant GL_COMPRESSED_GEOM_ACCELERATED_SUNX

constant int GL.GL_COMPRESSED_GEOM_ACCELERATED_SUNX


Constant GL_COMPRESSED_GEOM_VERSION_SUNX

constant int GL.GL_COMPRESSED_GEOM_VERSION_SUNX


Constant GL_CONSTANT_ALPHA_EXT

constant int GL.GL_CONSTANT_ALPHA_EXT


Constant GL_CONSTANT_ATTENUATION

constant int GL.GL_CONSTANT_ATTENUATION

Description

Used in glGetLight and glLight


Constant GL_CONSTANT_BORDER_HP

constant int GL.GL_CONSTANT_BORDER_HP


Constant GL_CONSTANT_COLOR_EXT

constant int GL.GL_CONSTANT_COLOR_EXT


Constant GL_CONVOLUTION_1D_EXT

constant int GL.GL_CONVOLUTION_1D_EXT


Constant GL_CONVOLUTION_2D_EXT

constant int GL.GL_CONVOLUTION_2D_EXT


Constant GL_CONVOLUTION_BORDER_COLOR_HP

constant int GL.GL_CONVOLUTION_BORDER_COLOR_HP


Constant GL_CONVOLUTION_BORDER_MODE_EXT

constant int GL.GL_CONVOLUTION_BORDER_MODE_EXT


Constant GL_CONVOLUTION_FILTER_BIAS_EXT

constant int GL.GL_CONVOLUTION_FILTER_BIAS_EXT


Constant GL_CONVOLUTION_FILTER_SCALE_EXT

constant int GL.GL_CONVOLUTION_FILTER_SCALE_EXT


Constant GL_CONVOLUTION_FORMAT_EXT

constant int GL.GL_CONVOLUTION_FORMAT_EXT


Constant GL_CONVOLUTION_HEIGHT_EXT

constant int GL.GL_CONVOLUTION_HEIGHT_EXT


Constant GL_CONVOLUTION_WIDTH_EXT

constant int GL.GL_CONVOLUTION_WIDTH_EXT


Constant GL_COPY

constant int GL.GL_COPY

Description

Used in glGetIntegerv, glLogicOp, glGetBooleanv, glGetFloatv, glGetDoublev and glFeedbackBuffer


Constant GL_COPY_INVERTED

constant int GL.GL_COPY_INVERTED

Description

Used in glLogicOp


Constant GL_COPY_PIXEL_TOKEN

constant int GL.GL_COPY_PIXEL_TOKEN

Description

Used in glFeedbackBuffer


Constant GL_CUBIC_EXT

constant int GL.GL_CUBIC_EXT


Constant GL_CULL_FACE

constant int GL.GL_CULL_FACE

Description

Used in glIsEnabled, glGetIntegerv, glCullFace, glDisable, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glFrontFace


Constant GL_CULL_FACE_MODE

constant int GL.GL_CULL_FACE_MODE

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_CURRENT_BIT

constant int GL.GL_CURRENT_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_CURRENT_COLOR

constant int GL.GL_CURRENT_COLOR

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glRasterPos


Constant GL_CURRENT_INDEX

constant int GL.GL_CURRENT_INDEX

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glRasterPos


Constant GL_CURRENT_NORMAL

constant int GL.GL_CURRENT_NORMAL

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_CURRENT_RASTER_COLOR

constant int GL.GL_CURRENT_RASTER_COLOR

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glRasterPos


Constant GL_CURRENT_RASTER_DISTANCE

constant int GL.GL_CURRENT_RASTER_DISTANCE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glRasterPos


Constant GL_CURRENT_RASTER_INDEX

constant int GL.GL_CURRENT_RASTER_INDEX

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glRasterPos


Constant GL_CURRENT_RASTER_POSITION

constant int GL.GL_CURRENT_RASTER_POSITION

Description

Used in glGetIntegerv, glDrawPixels, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glRasterPos


Constant GL_CURRENT_RASTER_POSITION_VALID

constant int GL.GL_CURRENT_RASTER_POSITION_VALID

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glRasterPos


Constant GL_CURRENT_RASTER_TEXTURE_COORDS

constant int GL.GL_CURRENT_RASTER_TEXTURE_COORDS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glRasterPos


Constant GL_CURRENT_TEXTURE_COORDS

constant int GL.GL_CURRENT_TEXTURE_COORDS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glRasterPos


Constant GL_CW

constant int GL.GL_CW

Description

Used in glFrontFace


Constant GL_DECAL

constant int GL.GL_DECAL

Description

Used in glTexEnv


Constant GL_DECR

constant int GL.GL_DECR

Description

Used in glStencilOp


Constant GL_DEPTH

constant int GL.GL_DEPTH

Description

Used in glIsEnabled, glGetIntegerv, glDrawPixels, glDisable, glPopAttrib, glEnable, glPixelTransfer, glGetBooleanv, glGetTexImage, glPushAttrib, glGetFloatv, glGetDoublev, glReadPixels, glTexImage2D, glCopyPixels, glDepthFunc, glTexImage1D and glClear


Constant GL_DEPTH_BIAS

constant int GL.GL_DEPTH_BIAS

Description

Used in glGetIntegerv, glDrawPixels, glPopAttrib, glPixelTransfer, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev, glReadPixels and glCopyPixels


Constant GL_DEPTH_BITS

constant int GL.GL_DEPTH_BITS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_DEPTH_BUFFER_BIT

constant int GL.GL_DEPTH_BUFFER_BIT

Description

Used in glPopAttrib, glPushAttrib and glClear


Constant GL_DEPTH_CLEAR_VALUE

constant int GL.GL_DEPTH_CLEAR_VALUE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_DEPTH_COMPONENT

constant int GL.GL_DEPTH_COMPONENT

Description

Used in glDrawPixels, glGetTexImage, glReadPixels, glTexImage2D and glTexImage1D


Constant GL_DEPTH_FUNC

constant int GL.GL_DEPTH_FUNC

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_DEPTH_RANGE

constant int GL.GL_DEPTH_RANGE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_DEPTH_SCALE

constant int GL.GL_DEPTH_SCALE

Description

Used in glGetIntegerv, glDrawPixels, glPopAttrib, glPixelTransfer, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev, glReadPixels and glCopyPixels


Constant GL_DEPTH_TEST

constant int GL.GL_DEPTH_TEST

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glDepthFunc


Constant GL_DEPTH_WRITEMASK

constant int GL.GL_DEPTH_WRITEMASK

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_DIFFUSE

constant int GL.GL_DIFFUSE

Description

Used in glColorMaterial, glGetLight, glMaterial, glLight and glGetMaterial


Constant GL_DITHER

constant int GL.GL_DITHER

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_DOMAIN

constant int GL.GL_DOMAIN

Description

Used in glGetMap


Constant GL_DONT_CARE

constant int GL.GL_DONT_CARE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glHint


Constant GL_DOUBLE

constant int GL.GL_DOUBLE

Description

Used in glGetIntegerv, glVertexPointer, glColorPointer, glNormalPointer, glGetBooleanv, glGetFloatv, glGetDoublev, glTexCoordPointer and glIndexPointer


Constant GL_DOUBLEBUFFER

constant int GL.GL_DOUBLEBUFFER

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_DRAW_BUFFER

constant int GL.GL_DRAW_BUFFER

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_DRAW_PIXEL_TOKEN

constant int GL.GL_DRAW_PIXEL_TOKEN

Description

Used in glFeedbackBuffer


Constant GL_DST_ALPHA

constant int GL.GL_DST_ALPHA

Description

Used in glBlendFunc


Constant GL_DST_COLOR

constant int GL.GL_DST_COLOR

Description

Used in glBlendFunc


Constant GL_EDGE_FLAG

constant int GL.GL_EDGE_FLAG

Description

Used in glIsEnabled, glGetIntegerv, glPopAttrib, glEnableClientState, glGetPointerv, glGetBooleanv, glPushAttrib, glGetFloatv, glEdgeFlagPointer, glGetDoublev and glDisableClientState


Constant GL_EDGE_FLAG_ARRAY

constant int GL.GL_EDGE_FLAG_ARRAY

Description

Used in glIsEnabled, glGetIntegerv, glEnableClientState, glGetPointerv, glGetBooleanv, glGetFloatv, glEdgeFlagPointer, glGetDoublev and glDisableClientState


Constant GL_EDGE_FLAG_ARRAY_POINTER

constant int GL.GL_EDGE_FLAG_ARRAY_POINTER

Description

Used in glGetPointerv


Constant GL_EDGE_FLAG_ARRAY_STRIDE

constant int GL.GL_EDGE_FLAG_ARRAY_STRIDE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_EMISSION

constant int GL.GL_EMISSION

Description

Used in glColorMaterial, glMaterial and glGetMaterial


Constant GL_ENABLE_BIT

constant int GL.GL_ENABLE_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_EQUAL

constant int GL.GL_EQUAL

Description

Used in glAlphaFunc, glDepthFunc and glStencilFunc


Constant GL_EQUIV

constant int GL.GL_EQUIV

Description

Used in glLogicOp


Constant GL_EVAL_BIT

constant int GL.GL_EVAL_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_EXP

constant int GL.GL_EXP

Description

Used in glFog, glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_EXP2

constant int GL.GL_EXP2

Description

Used in glFog


Constant GL_EXTENSIONS

constant int GL.GL_EXTENSIONS

Description

Used in glGetString


Constant GL_EXT_abgr

constant int GL.GL_EXT_abgr


Constant GL_EXT_blend_color

constant int GL.GL_EXT_blend_color


Constant GL_EXT_blend_minmax

constant int GL.GL_EXT_blend_minmax


Constant GL_EXT_blend_subtract

constant int GL.GL_EXT_blend_subtract


Constant GL_EXT_convolution

constant int GL.GL_EXT_convolution


Constant GL_EXT_histogram

constant int GL.GL_EXT_histogram


Constant GL_EXT_pixel_transform

constant int GL.GL_EXT_pixel_transform


Constant GL_EXT_rescale_normal

constant int GL.GL_EXT_rescale_normal


Constant GL_EXT_texture3D

constant int GL.GL_EXT_texture3D


Constant GL_EYE_LINEAR

constant int GL.GL_EYE_LINEAR

Description

Used in glGetTexGen and glTexGen


Constant GL_EYE_PLANE

constant int GL.GL_EYE_PLANE

Description

Used in glGetTexGen and glTexGen


Constant GL_FALSE

constant int GL.GL_FALSE

Description

Used in glIsEnabled, glDepthMask, glIsList, glAreTexturesResident, glGetIntegerv, glIsTexture, glDisable, glEdgeFlag, glEnable, glColorMask, glGetBooleanv, glGetFloatv, glGetDoublev and glEdgeFlagv


Constant GL_FASTEST

constant int GL.GL_FASTEST

Description

Used in glHint


Constant GL_FEEDBACK

constant int GL.GL_FEEDBACK

Description

Used in glRenderMode, glPassThrough, glGetPointerv and glFeedbackBuffer


Constant GL_FEEDBACK_BUFFER_POINTER

constant int GL.GL_FEEDBACK_BUFFER_POINTER

Description

Used in glGetPointerv


Constant GL_FEEDBACK_BUFFER_SIZE

constant int GL.GL_FEEDBACK_BUFFER_SIZE


Constant GL_FEEDBACK_BUFFER_TYPE

constant int GL.GL_FEEDBACK_BUFFER_TYPE


Constant GL_FILL

constant int GL.GL_FILL

Description

Used in glGetIntegerv, glDisable, glEnable, glPolygonMode, glGetBooleanv, glGetFloatv, glGetDoublev and glEvalMesh


Constant GL_FLAT

constant int GL.GL_FLAT

Description

Used in glShadeModel


Constant GL_FLOAT

constant int GL.GL_FLOAT

Description

Used in glGetIntegerv, glDrawPixels, glVertexPointer, glColorPointer, glTexSubImage2D, glNormalPointer, glGetBooleanv, glGetTexImage, glGetFloatv, glGetDoublev, glCallLists, glReadPixels, glTexImage2D, glTexCoordPointer, glIndexPointer, glTexSubImage1D and glTexImage1D


Constant GL_FOG

constant int GL.GL_FOG

Description

Used in glIsEnabled, glFog, glGetIntegerv, glDisable, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glHint


Constant GL_FOG_BIT

constant int GL.GL_FOG_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_FOG_COLOR

constant int GL.GL_FOG_COLOR

Description

Used in glFog, glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_FOG_DENSITY

constant int GL.GL_FOG_DENSITY

Description

Used in glFog, glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_FOG_END

constant int GL.GL_FOG_END

Description

Used in glFog, glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_FOG_HINT

constant int GL.GL_FOG_HINT

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glHint


Constant GL_FOG_INDEX

constant int GL.GL_FOG_INDEX

Description

Used in glFog, glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_FOG_MODE

constant int GL.GL_FOG_MODE

Description

Used in glFog, glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_FOG_START

constant int GL.GL_FOG_START

Description

Used in glFog, glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_FRONT

constant int GL.GL_FRONT

Description

Used in glGetIntegerv, glColorMaterial, glCullFace, glPopAttrib, glPolygonMode, glGetBooleanv, glPushAttrib, glGetFloatv, glReadBuffer, glMaterial, glGetDoublev, glDrawBuffer and glGetMaterial


Constant GL_FRONT_AND_BACK

constant int GL.GL_FRONT_AND_BACK

Description

Used in glGetIntegerv, glColorMaterial, glCullFace, glPolygonMode, glGetBooleanv, glGetFloatv, glMaterial, glGetDoublev and glDrawBuffer


Constant GL_FRONT_FACE

constant int GL.GL_FRONT_FACE

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_FRONT_LEFT

constant int GL.GL_FRONT_LEFT

Description

Used in glReadBuffer and glDrawBuffer


Constant GL_FRONT_RIGHT

constant int GL.GL_FRONT_RIGHT

Description

Used in glReadBuffer and glDrawBuffer


Constant GL_FUNC_ADD_EXT

constant int GL.GL_FUNC_ADD_EXT

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_FUNC_REVERSE_SUBTRACT_EXT

constant int GL.GL_FUNC_REVERSE_SUBTRACT_EXT


Constant GL_FUNC_SUBTRACT_EXT

constant int GL.GL_FUNC_SUBTRACT_EXT


Constant GL_GEQUAL

constant int GL.GL_GEQUAL

Description

Used in glAlphaFunc, glDepthFunc and glStencilFunc


Constant GL_GREATER

constant int GL.GL_GREATER

Description

Used in glAlphaFunc, glDepthFunc and glStencilFunc


Constant GL_GREEN

constant int GL.GL_GREEN

Description

Used in glGetIntegerv, glDrawPixels, glTexSubImage2D, glPopAttrib, glPixelTransfer, glGetBooleanv, glGetTexImage, glPushAttrib, glGetFloatv, glGetDoublev, glReadPixels, glTexImage2D, glTexSubImage1D and glTexImage1D


Constant GL_GREEN_BIAS

constant int GL.GL_GREEN_BIAS

Description

Used in glGetIntegerv, glPopAttrib, glPixelTransfer, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_GREEN_BITS

constant int GL.GL_GREEN_BITS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_GREEN_SCALE

constant int GL.GL_GREEN_SCALE

Description

Used in glGetIntegerv, glPopAttrib, glPixelTransfer, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_HINT_BIT

constant int GL.GL_HINT_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_HISTOGRAM_ALPHA_SIZE_EXT

constant int GL.GL_HISTOGRAM_ALPHA_SIZE_EXT


Constant GL_HISTOGRAM_BLUE_SIZE_EXT

constant int GL.GL_HISTOGRAM_BLUE_SIZE_EXT


Constant GL_HISTOGRAM_EXT

constant int GL.GL_HISTOGRAM_EXT


Constant GL_HISTOGRAM_FORMAT_EXT

constant int GL.GL_HISTOGRAM_FORMAT_EXT


Constant GL_HISTOGRAM_GREEN_SIZE_EXT

constant int GL.GL_HISTOGRAM_GREEN_SIZE_EXT


Constant GL_HISTOGRAM_LUMINANCE_SIZE_EXT

constant int GL.GL_HISTOGRAM_LUMINANCE_SIZE_EXT


Constant GL_HISTOGRAM_RED_SIZE_EXT

constant int GL.GL_HISTOGRAM_RED_SIZE_EXT


Constant GL_HISTOGRAM_SINK_EXT

constant int GL.GL_HISTOGRAM_SINK_EXT


Constant GL_HISTOGRAM_WIDTH_EXT

constant int GL.GL_HISTOGRAM_WIDTH_EXT


Constant GL_HP_convolution_border_modes

constant int GL.GL_HP_convolution_border_modes


Constant GL_HP_occlusion_test

constant int GL.GL_HP_occlusion_test


Constant GL_IGNORE_BORDER_HP

constant int GL.GL_IGNORE_BORDER_HP


Constant GL_INCR

constant int GL.GL_INCR

Description

Used in glStencilOp


Constant GL_INDEX_ARRAY

constant int GL.GL_INDEX_ARRAY

Description

Used in glIsEnabled, glGetIntegerv, glEnableClientState, glGetPointerv, glGetBooleanv, glGetFloatv, glGetDoublev, glIndexPointer and glDisableClientState


Constant GL_INDEX_ARRAY_POINTER

constant int GL.GL_INDEX_ARRAY_POINTER

Description

Used in glGetPointerv


Constant GL_INDEX_ARRAY_STRIDE

constant int GL.GL_INDEX_ARRAY_STRIDE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_INDEX_ARRAY_TYPE

constant int GL.GL_INDEX_ARRAY_TYPE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_INDEX_BITS

constant int GL.GL_INDEX_BITS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_INDEX_CLEAR_VALUE

constant int GL.GL_INDEX_CLEAR_VALUE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_INDEX_LOGIC_OP

constant int GL.GL_INDEX_LOGIC_OP

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glLogicOp, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_INDEX_MODE

constant int GL.GL_INDEX_MODE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_INDEX_OFFSET

constant int GL.GL_INDEX_OFFSET

Description

Used in glGetIntegerv, glDrawPixels, glPopAttrib, glPixelTransfer, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev, glReadPixels, glTexImage2D, glCopyPixels and glTexImage1D


Constant GL_INDEX_SHIFT

constant int GL.GL_INDEX_SHIFT

Description

Used in glGetIntegerv, glDrawPixels, glPopAttrib, glPixelTransfer, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev, glReadPixels, glTexImage2D, glCopyPixels and glTexImage1D


Constant GL_INDEX_WRITEMASK

constant int GL.GL_INDEX_WRITEMASK

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_INT

constant int GL.GL_INT

Description

Used in glTexEnv, glDrawPixels, glVertexPointer, glColorPointer, glCopyTexImage1D, glTexSubImage2D, glNormalPointer, glGetTexImage, glCallLists, glReadPixels, glCopyTexImage2D, glTexImage2D, glTexCoordPointer, glIndexPointer, glTexSubImage1D and glTexImage1D


Constant GL_INTENSITY

constant int GL.GL_INTENSITY

Description

Used in glTexEnv, glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_INTENSITY12

constant int GL.GL_INTENSITY12

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_INTENSITY16

constant int GL.GL_INTENSITY16

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_INTENSITY4

constant int GL.GL_INTENSITY4

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_INTENSITY8

constant int GL.GL_INTENSITY8

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_INVALID_ENUM

constant int GL.GL_INVALID_ENUM

Description

Used in glMatrixMode, glPixelStore, glIsEnabled, glGetTexLevelParameter, glFog, glTexEnv, glMap1, glRenderMode, glGetTexGen, glGetIntegerv, glEnd, glDrawElements, glDrawArrays, glCopyTexSubImage2D, glColorMaterial, glBindTexture, glGetClipPlane, glCullFace, glGetError, glClipPlane, glDrawPixels, glBlendFunc, glVertexPointer, glGetLight, glDisable, glMap2, glColorPointer, glCopyTexImage1D, glGetPixelMap, glTexSubImage2D, glNormalPointer, glEnable, glEnableClientState, glGetPointerv, glPixelTransfer, glPolygonMode, glGetTexParameter, glLogicOp, glGetBooleanv, glGetTexImage, glPixelMap, glGetFloatv, glGetMap, glAccum, glReadBuffer, glMaterial, glEdgeFlagPointer, glGetDoublev, glCallLists, glInterleavedArrays, glAlphaFunc, glShadeModel, glNewList, glReadPixels, glCopyTexImage2D, glTexImage2D, glGetTexEnv, glFeedbackBuffer, glEndList, glBegin, glLight, glStencilOp, glTexCoordPointer, glCopyPixels, glDepthFunc, glLightModel, glIndexPointer, glGetString, glTexParameter, glDisableClientState, glTexSubImage1D, glDrawBuffer, glHint, glTexImage1D, glStencilFunc, glGetMaterial, glCopyTexSubImage1D, glFrontFace, glEvalMesh and glTexGen


Constant GL_INVALID_OPERATION

constant int GL.GL_INVALID_OPERATION

Description

Used in glPolygonOffset, glPushMatrix, glMatrixMode, glLoadName, glPixelStore, glIsEnabled, glGetTexLevelParameter, glGenTextures, glFog, glTexEnv, glClearColor, glMap1, glPrioritizeTextures, glDepthMask, glPushName, glRenderMode, glMultMatrix, glIsList, glFrustum, glDepthRange, glAreTexturesResident, glDeleteTextures, glGetTexGen, glGetIntegerv, glEnd, glIsTexture, glDrawElements, glGenLists, glBlendColorEXT, glViewport, glDrawArrays, glCopyTexSubImage2D, glColorMaterial, glBindTexture, glGetClipPlane, glFinish, glCullFace, glGetError, glStencilMask, glClipPlane, glDrawPixels, glBlendFunc, glSelectBuffer, glGetLight, glInitNames, glPassThrough, glDisable, glMap2, glLineStipple, glCopyTexImage1D, glGetPixelMap, glTexSubImage2D, glPopAttrib, glEnable, glListBase, glColorMask, glPixelTransfer, glPolygonMode, glGetTexParameter, glPopName, glLogicOp, glIndexMask, glGetBooleanv, glGetTexImage, glPixelMap, glTranslate, glPushAttrib, glGetFloatv, glGetMap, glAccum, glReadBuffer, glGetDoublev, glClearDepth, glRasterPos, glAlphaFunc, glShadeModel, glNewList, glReadPixels, glCopyTexImage2D, glRect, glTexImage2D, glGetTexEnv, glClearIndex, glFeedbackBuffer, glRotate, glEndList, glBegin, glLight, glGetPolygonStipple, glStencilOp, glClearStencil, glBitmap, glScale, glCopyPixels, glFlush, glOrtho, glDepthFunc, glMapGrid, glLightModel, glGetString, glTexParameter, glScissor, glTexSubImage1D, glLoadIdentity, glPixelZoom, glDrawBuffer, glLineWidth, glHint, glTexImage1D, glStencilFunc, glGetMaterial, glClear, glCopyTexSubImage1D, glPopMatrix, glPointSize, glPolygonStipple, glFrontFace, glLoadMatrix, glEvalMesh, glTexGen, glClearAccum and glDeleteLists


Constant GL_INVALID_VALUE

constant int GL.GL_INVALID_VALUE

Description

Used in glPixelStore, glGetTexLevelParameter, glGenTextures, glFog, glMap1, glPrioritizeTextures, glFrustum, glAreTexturesResident, glDeleteTextures, glDrawElements, glGenLists, glViewport, glDrawArrays, glCopyTexSubImage2D, glGetError, glDrawPixels, glVertexPointer, glSelectBuffer, glMap2, glColorPointer, glCopyTexImage1D, glTexSubImage2D, glNormalPointer, glGetTexImage, glPixelMap, glMaterial, glCallLists, glInterleavedArrays, glNewList, glReadPixels, glCopyTexImage2D, glTexImage2D, glFeedbackBuffer, glEndList, glLight, glBitmap, glTexCoordPointer, glCopyPixels, glMapGrid, glIndexPointer, glScissor, glTexSubImage1D, glLineWidth, glTexImage1D, glClear, glCopyTexSubImage1D, glPointSize and glDeleteLists


Constant GL_INVERT

constant int GL.GL_INVERT

Description

Used in glLogicOp and glStencilOp


Constant GL_KEEP

constant int GL.GL_KEEP

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glStencilOp


Constant GL_LARGE_SUNX

constant int GL.GL_LARGE_SUNX


Constant GL_LEFT

constant int GL.GL_LEFT

Description

Used in glReadBuffer and glDrawBuffer


Constant GL_LEQUAL

constant int GL.GL_LEQUAL

Description

Used in glAlphaFunc, glDepthFunc and glStencilFunc


Constant GL_LESS

constant int GL.GL_LESS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev, glAlphaFunc, glDepthFunc and glStencilFunc


Constant GL_LIGHT0

constant int GL.GL_LIGHT0

Description

Used in glGetLight and glLight


Constant GL_LIGHT1

constant int GL.GL_LIGHT1


Constant GL_LIGHT2

constant int GL.GL_LIGHT2


Constant GL_LIGHT3

constant int GL.GL_LIGHT3


Constant GL_LIGHT4

constant int GL.GL_LIGHT4


Constant GL_LIGHT5

constant int GL.GL_LIGHT5


Constant GL_LIGHT6

constant int GL.GL_LIGHT6


Constant GL_LIGHT7

constant int GL.GL_LIGHT7


Constant GL_LIGHTING

constant int GL.GL_LIGHTING

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glLight


Constant GL_LIGHTING_BIT

constant int GL.GL_LIGHTING_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_LIGHT_MODEL_AMBIENT

constant int GL.GL_LIGHT_MODEL_AMBIENT

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glLightModel


Constant GL_LIGHT_MODEL_LOCAL_VIEWER

constant int GL.GL_LIGHT_MODEL_LOCAL_VIEWER

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glLightModel


Constant GL_LIGHT_MODEL_TWO_SIDE

constant int GL.GL_LIGHT_MODEL_TWO_SIDE

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glLightModel


Constant GL_LINE

constant int GL.GL_LINE

Description

Used in glIsEnabled, glFog, glGetIntegerv, glEnd, glDrawElements, glDrawArrays, glGetLight, glDisable, glLineStipple, glEdgeFlag, glPopAttrib, glEnable, glPolygonMode, glGetTexParameter, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev, glFeedbackBuffer, glBegin, glLight, glTexParameter, glLineWidth, glHint, glEdgeFlagv and glEvalMesh


Constant GL_LINEAR

constant int GL.GL_LINEAR

Description

Used in glFog, glGetLight, glGetTexParameter, glLight and glTexParameter


Constant GL_LINEAR_ATTENUATION

constant int GL.GL_LINEAR_ATTENUATION

Description

Used in glGetLight and glLight


Constant GL_LINEAR_MIPMAP_LINEAR

constant int GL.GL_LINEAR_MIPMAP_LINEAR

Description

Used in glTexParameter


Constant GL_LINEAR_MIPMAP_NEAREST

constant int GL.GL_LINEAR_MIPMAP_NEAREST

Description

Used in glTexParameter


Constant GL_LINES

constant int GL.GL_LINES

Description

Used in glEnd, glDrawElements, glDrawArrays, glLineStipple, glBegin and glEvalMesh


Constant GL_LINE_BIT

constant int GL.GL_LINE_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_LINE_LOOP

constant int GL.GL_LINE_LOOP

Description

Used in glEnd, glDrawElements, glDrawArrays and glBegin


Constant GL_LINE_RESET_TOKEN

constant int GL.GL_LINE_RESET_TOKEN

Description

Used in glFeedbackBuffer


Constant GL_LINE_SMOOTH

constant int GL.GL_LINE_SMOOTH

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glPolygonMode, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev, glLineWidth and glHint


Constant GL_LINE_SMOOTH_HINT

constant int GL.GL_LINE_SMOOTH_HINT

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glHint


Constant GL_LINE_STIPPLE

constant int GL.GL_LINE_STIPPLE

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glLineStipple, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_LINE_STIPPLE_PATTERN

constant int GL.GL_LINE_STIPPLE_PATTERN

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_LINE_STIPPLE_REPEAT

constant int GL.GL_LINE_STIPPLE_REPEAT

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_LINE_STRIP

constant int GL.GL_LINE_STRIP

Description

Used in glEnd, glDrawElements, glDrawArrays, glBegin and glEvalMesh


Constant GL_LINE_TOKEN

constant int GL.GL_LINE_TOKEN

Description

Used in glFeedbackBuffer


Constant GL_LINE_WIDTH

constant int GL.GL_LINE_WIDTH

Description

Used in glGetIntegerv, glPolygonMode, glGetBooleanv, glGetFloatv, glGetDoublev and glLineWidth


Constant GL_LINE_WIDTH_GRANULARITY

constant int GL.GL_LINE_WIDTH_GRANULARITY

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glLineWidth


Constant GL_LINE_WIDTH_RANGE

constant int GL.GL_LINE_WIDTH_RANGE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glLineWidth


Constant GL_LIST_BASE

constant int GL.GL_LIST_BASE

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_LIST_BIT

constant int GL.GL_LIST_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_LIST_INDEX

constant int GL.GL_LIST_INDEX

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_LIST_MODE

constant int GL.GL_LIST_MODE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_LOAD

constant int GL.GL_LOAD

Description

Used in glAccum


Constant GL_LOGIC_OP

constant int GL.GL_LOGIC_OP

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_LOGIC_OP_MODE

constant int GL.GL_LOGIC_OP_MODE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_LUMINANCE

constant int GL.GL_LUMINANCE

Description

Used in glTexEnv, glDrawPixels, glCopyTexImage1D, glTexSubImage2D, glGetTexImage, glReadPixels, glCopyTexImage2D, glTexImage2D, glTexSubImage1D and glTexImage1D


Constant GL_LUMINANCE12

constant int GL.GL_LUMINANCE12

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_LUMINANCE12_ALPHA12

constant int GL.GL_LUMINANCE12_ALPHA12

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_LUMINANCE12_ALPHA4

constant int GL.GL_LUMINANCE12_ALPHA4

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_LUMINANCE16

constant int GL.GL_LUMINANCE16

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_LUMINANCE16_ALPHA16

constant int GL.GL_LUMINANCE16_ALPHA16

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_LUMINANCE4

constant int GL.GL_LUMINANCE4

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_LUMINANCE4_ALPHA4

constant int GL.GL_LUMINANCE4_ALPHA4

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_LUMINANCE6_ALPHA2

constant int GL.GL_LUMINANCE6_ALPHA2

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_LUMINANCE8

constant int GL.GL_LUMINANCE8

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_LUMINANCE8_ALPHA8

constant int GL.GL_LUMINANCE8_ALPHA8

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_LUMINANCE_ALPHA

constant int GL.GL_LUMINANCE_ALPHA

Description

Used in glDrawPixels, glCopyTexImage1D, glTexSubImage2D, glGetTexImage, glReadPixels, glCopyTexImage2D, glTexImage2D, glTexSubImage1D and glTexImage1D


Constant GL_MAP1_COLOR_4

constant int GL.GL_MAP1_COLOR_4

Description

Used in glIsEnabled, glMap1, glGetIntegerv, glDisable, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP1_GRID_DOMAIN

constant int GL.GL_MAP1_GRID_DOMAIN

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MAP1_GRID_SEGMENTS

constant int GL.GL_MAP1_GRID_SEGMENTS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MAP1_INDEX

constant int GL.GL_MAP1_INDEX

Description

Used in glMap1, glGetIntegerv, glDisable, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP1_NORMAL

constant int GL.GL_MAP1_NORMAL

Description

Used in glMap1, glGetIntegerv, glDisable, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP1_TEXTURE_COORD_1

constant int GL.GL_MAP1_TEXTURE_COORD_1

Description

Used in glMap1, glGetIntegerv, glDisable, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP1_TEXTURE_COORD_2

constant int GL.GL_MAP1_TEXTURE_COORD_2

Description

Used in glMap1, glGetIntegerv, glDisable, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP1_TEXTURE_COORD_3

constant int GL.GL_MAP1_TEXTURE_COORD_3

Description

Used in glMap1, glGetIntegerv, glDisable, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP1_TEXTURE_COORD_4

constant int GL.GL_MAP1_TEXTURE_COORD_4

Description

Used in glMap1, glGetIntegerv, glDisable, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP1_VERTEX_3

constant int GL.GL_MAP1_VERTEX_3

Description

Used in glMap1, glGetIntegerv, glDisable, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP1_VERTEX_4

constant int GL.GL_MAP1_VERTEX_4

Description

Used in glMap1, glGetIntegerv, glDisable, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP2_COLOR_4

constant int GL.GL_MAP2_COLOR_4

Description

Used in glGetIntegerv, glDisable, glMap2, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP2_GRID_DOMAIN

constant int GL.GL_MAP2_GRID_DOMAIN

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MAP2_GRID_SEGMENTS

constant int GL.GL_MAP2_GRID_SEGMENTS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MAP2_INDEX

constant int GL.GL_MAP2_INDEX

Description

Used in glGetIntegerv, glDisable, glMap2, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP2_NORMAL

constant int GL.GL_MAP2_NORMAL

Description

Used in glGetIntegerv, glDisable, glMap2, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP2_TEXTURE_COORD_1

constant int GL.GL_MAP2_TEXTURE_COORD_1

Description

Used in glGetIntegerv, glDisable, glMap2, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP2_TEXTURE_COORD_2

constant int GL.GL_MAP2_TEXTURE_COORD_2

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glMap2, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP2_TEXTURE_COORD_3

constant int GL.GL_MAP2_TEXTURE_COORD_3

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glMap2, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP2_TEXTURE_COORD_4

constant int GL.GL_MAP2_TEXTURE_COORD_4

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glMap2, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP2_VERTEX_3

constant int GL.GL_MAP2_VERTEX_3

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glMap2, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP2_VERTEX_4

constant int GL.GL_MAP2_VERTEX_4

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glMap2, glEnable, glGetBooleanv, glGetFloatv, glGetMap, glGetDoublev and glEvalCoord


Constant GL_MAP_COLOR

constant int GL.GL_MAP_COLOR

Description

Used in glGetIntegerv, glDrawPixels, glPopAttrib, glPixelTransfer, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev, glReadPixels and glCopyPixels


Constant GL_MAP_STENCIL

constant int GL.GL_MAP_STENCIL

Description

Used in glGetIntegerv, glDrawPixels, glPopAttrib, glPixelTransfer, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev, glReadPixels and glCopyPixels


Constant GL_MATRIX_MODE

constant int GL.GL_MATRIX_MODE

Description

Used in glMatrixMode, glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_MAX_3D_TEXTURE_SIZE_EXT

constant int GL.GL_MAX_3D_TEXTURE_SIZE_EXT


Constant GL_MAX_ATTRIB_STACK_DEPTH

constant int GL.GL_MAX_ATTRIB_STACK_DEPTH

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MAX_CLIENT_ATTRIB_STACK_DEPTH

constant int GL.GL_MAX_CLIENT_ATTRIB_STACK_DEPTH

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MAX_CLIP_PLANES

constant int GL.GL_MAX_CLIP_PLANES

Description

Used in glGetIntegerv, glGetClipPlane, glClipPlane, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MAX_CONVOLUTION_HEIGHT_EXT

constant int GL.GL_MAX_CONVOLUTION_HEIGHT_EXT


Constant GL_MAX_CONVOLUTION_WIDTH_EXT

constant int GL.GL_MAX_CONVOLUTION_WIDTH_EXT


Constant GL_MAX_EVAL_ORDER

constant int GL.GL_MAX_EVAL_ORDER

Description

Used in glMap1, glGetIntegerv, glMap2, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MAX_EXT

constant int GL.GL_MAX_EXT

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MAX_LIGHTS

constant int GL.GL_MAX_LIGHTS

Description

Used in glGetIntegerv, glGetLight, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glLight


Constant GL_MAX_LIST_NESTING

constant int GL.GL_MAX_LIST_NESTING

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MAX_MODELVIEW_STACK_DEPTH

constant int GL.GL_MAX_MODELVIEW_STACK_DEPTH

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MAX_NAME_STACK_DEPTH

constant int GL.GL_MAX_NAME_STACK_DEPTH

Description

Used in glPushName, glGetIntegerv, glPopName, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MAX_PIXEL_MAP_TABLE

constant int GL.GL_MAX_PIXEL_MAP_TABLE

Description

Used in glGetIntegerv, glGetBooleanv, glPixelMap, glGetFloatv and glGetDoublev


Constant GL_MAX_PIXEL_TRANSFORM_2D_STACK_DEPTH_EXT

constant int GL.GL_MAX_PIXEL_TRANSFORM_2D_STACK_DEPTH_EXT


Constant GL_MAX_PROJECTION_STACK_DEPTH

constant int GL.GL_MAX_PROJECTION_STACK_DEPTH

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MAX_TEXTURE_SIZE

constant int GL.GL_MAX_TEXTURE_SIZE

Description

Used in glGetTexLevelParameter, glGetIntegerv, glCopyTexSubImage2D, glCopyTexImage1D, glTexSubImage2D, glGetBooleanv, glGetTexImage, glGetFloatv, glGetDoublev, glCopyTexImage2D, glTexImage2D, glTexSubImage1D, glTexImage1D and glCopyTexSubImage1D


Constant GL_MAX_TEXTURE_STACK_DEPTH

constant int GL.GL_MAX_TEXTURE_STACK_DEPTH

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MAX_VIEWPORT_DIMS

constant int GL.GL_MAX_VIEWPORT_DIMS

Description

Used in glGetIntegerv, glViewport, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MINMAX_EXT

constant int GL.GL_MINMAX_EXT


Constant GL_MINMAX_FORMAT_EXT

constant int GL.GL_MINMAX_FORMAT_EXT


Constant GL_MINMAX_SINK_EXT

constant int GL.GL_MINMAX_SINK_EXT


Constant GL_MIN_EXT

constant int GL.GL_MIN_EXT

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MODELVIEW

constant int GL.GL_MODELVIEW

Description

Used in glPushMatrix, glMatrixMode, glGetIntegerv, glGetBooleanv, glTranslate, glGetFloatv, glGetDoublev, glRotate, glScale and glPopMatrix


Constant GL_MODELVIEW_MATRIX

constant int GL.GL_MODELVIEW_MATRIX

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MODELVIEW_STACK_DEPTH

constant int GL.GL_MODELVIEW_STACK_DEPTH

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_MODULATE

constant int GL.GL_MODULATE

Description

Used in glTexEnv and glGetTexEnv


Constant GL_MULT

constant int GL.GL_MULT

Description

Used in glAccum


Constant GL_N3F_V3F

constant int GL.GL_N3F_V3F

Description

Used in glInterleavedArrays


Constant GL_NAME_STACK_DEPTH

constant int GL.GL_NAME_STACK_DEPTH

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_NAND

constant int GL.GL_NAND

Description

Used in glLogicOp


Constant GL_NEAREST

constant int GL.GL_NEAREST

Description

Used in glGetTexParameter and glTexParameter


Constant GL_NEAREST_MIPMAP_LINEAR

constant int GL.GL_NEAREST_MIPMAP_LINEAR

Description

Used in glGetTexParameter and glTexParameter


Constant GL_NEAREST_MIPMAP_NEAREST

constant int GL.GL_NEAREST_MIPMAP_NEAREST

Description

Used in glTexParameter


Constant GL_NEVER

constant int GL.GL_NEVER

Description

Used in glAlphaFunc, glDepthFunc and glStencilFunc


Constant GL_NICEST

constant int GL.GL_NICEST

Description

Used in glHint


Constant GL_NONE

constant int GL.GL_NONE

Description

Used in glDrawBuffer


Constant GL_NOOP

constant int GL.GL_NOOP

Description

Used in glLogicOp


Constant GL_NOR

constant int GL.GL_NOR

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glNormalPointer, glPopAttrib, glEnable, glEnableClientState, glGetPointerv, glLogicOp, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev, glNormal and glDisableClientState


Constant GL_NORMALIZE

constant int GL.GL_NORMALIZE

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glNormal


Constant GL_NORMAL_ARRAY

constant int GL.GL_NORMAL_ARRAY

Description

Used in glIsEnabled, glGetIntegerv, glNormalPointer, glEnableClientState, glGetPointerv, glGetBooleanv, glGetFloatv, glGetDoublev and glDisableClientState


Constant GL_NORMAL_ARRAY_POINTER

constant int GL.GL_NORMAL_ARRAY_POINTER

Description

Used in glGetPointerv


Constant GL_NORMAL_ARRAY_STRIDE

constant int GL.GL_NORMAL_ARRAY_STRIDE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_NORMAL_ARRAY_TYPE

constant int GL.GL_NORMAL_ARRAY_TYPE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_NOTEQUAL

constant int GL.GL_NOTEQUAL

Description

Used in glAlphaFunc, glDepthFunc and glStencilFunc


Constant GL_NO_ERROR

constant int GL.GL_NO_ERROR

Description

Used in glGetError


Constant GL_OBJECT_LINEAR

constant int GL.GL_OBJECT_LINEAR

Description

Used in glTexGen


Constant GL_OBJECT_PLANE

constant int GL.GL_OBJECT_PLANE

Description

Used in glGetTexGen and glTexGen


Constant GL_OCCLUSION_RESULT_HP

constant int GL.GL_OCCLUSION_RESULT_HP


Constant GL_OCCLUSION_TEST_HP

constant int GL.GL_OCCLUSION_TEST_HP


Constant GL_ONE

constant int GL.GL_ONE

Description

Used in glGetIntegerv, glBlendFunc, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_ONE_MINUS_CONSTANT_ALPHA_EXT

constant int GL.GL_ONE_MINUS_CONSTANT_ALPHA_EXT


Constant GL_ONE_MINUS_CONSTANT_COLOR_EXT

constant int GL.GL_ONE_MINUS_CONSTANT_COLOR_EXT


Constant GL_ONE_MINUS_DST_ALPHA

constant int GL.GL_ONE_MINUS_DST_ALPHA

Description

Used in glBlendFunc


Constant GL_ONE_MINUS_DST_COLOR

constant int GL.GL_ONE_MINUS_DST_COLOR

Description

Used in glBlendFunc


Constant GL_ONE_MINUS_SRC_ALPHA

constant int GL.GL_ONE_MINUS_SRC_ALPHA

Description

Used in glBlendFunc


Constant GL_ONE_MINUS_SRC_COLOR

constant int GL.GL_ONE_MINUS_SRC_COLOR

Description

Used in glBlendFunc


Constant GL_OR

constant int GL.GL_OR

Description

Used in glLogicOp and glGetMap


Constant GL_ORDER

constant int GL.GL_ORDER

Description

Used in glGetMap


Constant GL_OR_INVERTED

constant int GL.GL_OR_INVERTED

Description

Used in glLogicOp


Constant GL_OR_REVERSE

constant int GL.GL_OR_REVERSE

Description

Used in glLogicOp


Constant GL_OUT_OF_MEMORY

constant int GL.GL_OUT_OF_MEMORY

Description

Used in glGetError, glNewList and glEndList


Constant GL_PACK_ALIGNMENT

constant int GL.GL_PACK_ALIGNMENT

Description

Used in glPixelStore, glGetIntegerv, glGetBooleanv, glGetTexImage, glGetFloatv and glGetDoublev


Constant GL_PACK_IMAGE_HEIGHT_EXT

constant int GL.GL_PACK_IMAGE_HEIGHT_EXT


Constant GL_PACK_LSB_FIRST

constant int GL.GL_PACK_LSB_FIRST

Description

Used in glPixelStore, glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glReadPixels


Constant GL_PACK_ROW_LENGTH

constant int GL.GL_PACK_ROW_LENGTH

Description

Used in glPixelStore, glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_PACK_SKIP_IMAGES_EXT

constant int GL.GL_PACK_SKIP_IMAGES_EXT


Constant GL_PACK_SKIP_PIXELS

constant int GL.GL_PACK_SKIP_PIXELS

Description

Used in glPixelStore, glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_PACK_SKIP_ROWS

constant int GL.GL_PACK_SKIP_ROWS

Description

Used in glPixelStore, glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_PACK_SWAP_BYTES

constant int GL.GL_PACK_SWAP_BYTES

Description

Used in glPixelStore, glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glReadPixels


Constant GL_PASS_THROUGH_TOKEN

constant int GL.GL_PASS_THROUGH_TOKEN

Description

Used in glPassThrough and glFeedbackBuffer


Constant GL_PERSPECTIVE_CORRECTION_HINT

constant int GL.GL_PERSPECTIVE_CORRECTION_HINT

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glHint


Constant GL_PIXEL_CUBIC_WEIGHT_EXT

constant int GL.GL_PIXEL_CUBIC_WEIGHT_EXT


Constant GL_PIXEL_MAG_FILTER_EXT

constant int GL.GL_PIXEL_MAG_FILTER_EXT


Constant GL_PIXEL_MAP_A_TO_A

constant int GL.GL_PIXEL_MAP_A_TO_A

Description

Used in glGetIntegerv, glGetPixelMap, glPixelTransfer, glGetBooleanv, glPixelMap, glGetFloatv and glGetDoublev


Constant GL_PIXEL_MAP_A_TO_A_SIZE

constant int GL.GL_PIXEL_MAP_A_TO_A_SIZE

Description

Used in glGetIntegerv, glPixelTransfer, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_PIXEL_MAP_B_TO_B

constant int GL.GL_PIXEL_MAP_B_TO_B

Description

Used in glGetIntegerv, glGetPixelMap, glPixelTransfer, glGetBooleanv, glPixelMap, glGetFloatv and glGetDoublev


Constant GL_PIXEL_MAP_B_TO_B_SIZE

constant int GL.GL_PIXEL_MAP_B_TO_B_SIZE

Description

Used in glGetIntegerv, glPixelTransfer, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_PIXEL_MAP_G_TO_G

constant int GL.GL_PIXEL_MAP_G_TO_G

Description

Used in glGetIntegerv, glGetPixelMap, glPixelTransfer, glGetBooleanv, glPixelMap, glGetFloatv and glGetDoublev


Constant GL_PIXEL_MAP_G_TO_G_SIZE

constant int GL.GL_PIXEL_MAP_G_TO_G_SIZE

Description

Used in glGetIntegerv, glPixelTransfer, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_PIXEL_MAP_I_TO_A

constant int GL.GL_PIXEL_MAP_I_TO_A

Description

Used in glGetIntegerv, glDrawPixels, glGetPixelMap, glPixelTransfer, glGetBooleanv, glPixelMap, glGetFloatv, glGetDoublev, glReadPixels, glTexImage2D and glTexImage1D


Constant GL_PIXEL_MAP_I_TO_A_SIZE

constant int GL.GL_PIXEL_MAP_I_TO_A_SIZE

Description

Used in glGetIntegerv, glPixelTransfer, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_PIXEL_MAP_I_TO_B

constant int GL.GL_PIXEL_MAP_I_TO_B

Description

Used in glGetIntegerv, glDrawPixels, glGetPixelMap, glPixelTransfer, glGetBooleanv, glPixelMap, glGetFloatv, glGetDoublev, glReadPixels, glTexImage2D and glTexImage1D


Constant GL_PIXEL_MAP_I_TO_B_SIZE

constant int GL.GL_PIXEL_MAP_I_TO_B_SIZE

Description

Used in glGetIntegerv, glPixelTransfer, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_PIXEL_MAP_I_TO_G

constant int GL.GL_PIXEL_MAP_I_TO_G

Description

Used in glGetIntegerv, glDrawPixels, glGetPixelMap, glPixelTransfer, glGetBooleanv, glPixelMap, glGetFloatv, glGetDoublev, glReadPixels, glTexImage2D and glTexImage1D


Constant GL_PIXEL_MAP_I_TO_G_SIZE

constant int GL.GL_PIXEL_MAP_I_TO_G_SIZE

Description

Used in glGetIntegerv, glPixelTransfer, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_PIXEL_MAP_I_TO_I

constant int GL.GL_PIXEL_MAP_I_TO_I

Description

Used in glGetIntegerv, glDrawPixels, glGetPixelMap, glPixelTransfer, glGetBooleanv, glPixelMap, glGetFloatv, glGetDoublev, glReadPixels and glCopyPixels


Constant GL_PIXEL_MAP_I_TO_I_SIZE

constant int GL.GL_PIXEL_MAP_I_TO_I_SIZE

Description

Used in glGetIntegerv, glPixelTransfer, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_PIXEL_MAP_I_TO_R

constant int GL.GL_PIXEL_MAP_I_TO_R

Description

Used in glGetIntegerv, glDrawPixels, glGetPixelMap, glPixelTransfer, glGetBooleanv, glPixelMap, glGetFloatv, glGetDoublev, glReadPixels, glTexImage2D and glTexImage1D


Constant GL_PIXEL_MAP_I_TO_R_SIZE

constant int GL.GL_PIXEL_MAP_I_TO_R_SIZE

Description

Used in glGetIntegerv, glPixelTransfer, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_PIXEL_MAP_R_TO_R

constant int GL.GL_PIXEL_MAP_R_TO_R

Description

Used in glGetIntegerv, glGetPixelMap, glPixelTransfer, glGetBooleanv, glPixelMap, glGetFloatv and glGetDoublev


Constant GL_PIXEL_MAP_R_TO_R_SIZE

constant int GL.GL_PIXEL_MAP_R_TO_R_SIZE

Description

Used in glGetIntegerv, glPixelTransfer, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_PIXEL_MAP_S_TO_S

constant int GL.GL_PIXEL_MAP_S_TO_S

Description

Used in glGetIntegerv, glDrawPixels, glGetPixelMap, glPixelTransfer, glGetBooleanv, glPixelMap, glGetFloatv, glGetDoublev, glReadPixels and glCopyPixels


Constant GL_PIXEL_MAP_S_TO_S_SIZE

constant int GL.GL_PIXEL_MAP_S_TO_S_SIZE

Description

Used in glGetIntegerv, glPixelTransfer, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_PIXEL_MIN_FILTER_EXT

constant int GL.GL_PIXEL_MIN_FILTER_EXT


Constant GL_PIXEL_MODE_BIT

constant int GL.GL_PIXEL_MODE_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_PIXEL_TRANSFORM_2D_EXT

constant int GL.GL_PIXEL_TRANSFORM_2D_EXT


Constant GL_PIXEL_TRANSFORM_2D_MATRIX_EXT

constant int GL.GL_PIXEL_TRANSFORM_2D_MATRIX_EXT


Constant GL_PIXEL_TRANSFORM_2D_STACK_DEPTH_EXT

constant int GL.GL_PIXEL_TRANSFORM_2D_STACK_DEPTH_EXT


Constant GL_PIXEL_TRANSFORM_COLOR_TABLE_EXT

constant int GL.GL_PIXEL_TRANSFORM_COLOR_TABLE_EXT


Constant GL_POINT

constant int GL.GL_POINT

Description

Used in glIsEnabled, glGetIntegerv, glEnd, glDrawElements, glDrawArrays, glDisable, glEdgeFlag, glPopAttrib, glEnable, glPolygonMode, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev, glFeedbackBuffer, glBegin, glHint, glEdgeFlagv, glPointSize and glEvalMesh


Constant GL_POINTS

constant int GL.GL_POINTS

Description

Used in glEnd, glDrawElements, glDrawArrays, glBegin and glEvalMesh


Constant GL_POINT_BIT

constant int GL.GL_POINT_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_POINT_SIZE

constant int GL.GL_POINT_SIZE

Description

Used in glGetIntegerv, glPolygonMode, glGetBooleanv, glGetFloatv, glGetDoublev and glPointSize


Constant GL_POINT_SIZE_GRANULARITY

constant int GL.GL_POINT_SIZE_GRANULARITY

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glPointSize


Constant GL_POINT_SIZE_RANGE

constant int GL.GL_POINT_SIZE_RANGE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glPointSize


Constant GL_POINT_SMOOTH

constant int GL.GL_POINT_SMOOTH

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glPolygonMode, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev, glHint and glPointSize


Constant GL_POINT_SMOOTH_HINT

constant int GL.GL_POINT_SMOOTH_HINT

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glHint


Constant GL_POINT_TOKEN

constant int GL.GL_POINT_TOKEN

Description

Used in glFeedbackBuffer


Constant GL_POLYGON

constant int GL.GL_POLYGON

Description

Used in glPolygonOffset, glIsEnabled, glGetIntegerv, glEnd, glDrawElements, glDrawArrays, glDisable, glEdgeFlag, glPopAttrib, glEnable, glPolygonMode, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev, glRect, glFeedbackBuffer, glBegin, glHint, glEdgeFlagv and glPolygonStipple


Constant GL_POLYGON_BIT

constant int GL.GL_POLYGON_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_POLYGON_MODE

constant int GL.GL_POLYGON_MODE

Description

Used in glGetIntegerv, glEdgeFlag, glPopAttrib, glPolygonMode, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glEdgeFlagv


Constant GL_POLYGON_OFFSET_FACTOR

constant int GL.GL_POLYGON_OFFSET_FACTOR

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_POLYGON_OFFSET_FILL

constant int GL.GL_POLYGON_OFFSET_FILL

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_POLYGON_OFFSET_LINE

constant int GL.GL_POLYGON_OFFSET_LINE

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_POLYGON_OFFSET_POINT

constant int GL.GL_POLYGON_OFFSET_POINT

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_POLYGON_OFFSET_UNITS

constant int GL.GL_POLYGON_OFFSET_UNITS

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_POLYGON_SMOOTH

constant int GL.GL_POLYGON_SMOOTH

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glPolygonMode, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glHint


Constant GL_POLYGON_SMOOTH_HINT

constant int GL.GL_POLYGON_SMOOTH_HINT

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glHint


Constant GL_POLYGON_STIPPLE

constant int GL.GL_POLYGON_STIPPLE

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glPolygonMode, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glPolygonStipple


Constant GL_POLYGON_STIPPLE_BIT

constant int GL.GL_POLYGON_STIPPLE_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_POLYGON_TOKEN

constant int GL.GL_POLYGON_TOKEN

Description

Used in glFeedbackBuffer


Constant GL_POSITION

constant int GL.GL_POSITION

Description

Used in glGetLight and glLight


Constant GL_POST_CONVOLUTION_ALPHA_BIAS_EXT

constant int GL.GL_POST_CONVOLUTION_ALPHA_BIAS_EXT


Constant GL_POST_CONVOLUTION_ALPHA_SCALE_EXT

constant int GL.GL_POST_CONVOLUTION_ALPHA_SCALE_EXT


Constant GL_POST_CONVOLUTION_BLUE_BIAS_EXT

constant int GL.GL_POST_CONVOLUTION_BLUE_BIAS_EXT


Constant GL_POST_CONVOLUTION_BLUE_SCALE_EXT

constant int GL.GL_POST_CONVOLUTION_BLUE_SCALE_EXT


Constant GL_POST_CONVOLUTION_COLOR_TABLE_SGI

constant int GL.GL_POST_CONVOLUTION_COLOR_TABLE_SGI


Constant GL_POST_CONVOLUTION_GREEN_BIAS_EXT

constant int GL.GL_POST_CONVOLUTION_GREEN_BIAS_EXT


Constant GL_POST_CONVOLUTION_GREEN_SCALE_EXT

constant int GL.GL_POST_CONVOLUTION_GREEN_SCALE_EXT


Constant GL_POST_CONVOLUTION_RED_BIAS_EXT

constant int GL.GL_POST_CONVOLUTION_RED_BIAS_EXT


Constant GL_POST_CONVOLUTION_RED_SCALE_EXT

constant int GL.GL_POST_CONVOLUTION_RED_SCALE_EXT


Constant GL_PROJECTION

constant int GL.GL_PROJECTION

Description

Used in glPushMatrix, glMatrixMode, glFrustum, glGetIntegerv, glGetBooleanv, glTranslate, glGetFloatv, glGetDoublev, glRotate, glScale, glOrtho and glPopMatrix


Constant GL_PROJECTION_MATRIX

constant int GL.GL_PROJECTION_MATRIX

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_PROJECTION_STACK_DEPTH

constant int GL.GL_PROJECTION_STACK_DEPTH

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_PROXY_COLOR_TABLE_SGI

constant int GL.GL_PROXY_COLOR_TABLE_SGI


Constant GL_PROXY_HISTOGRAM_EXT

constant int GL.GL_PROXY_HISTOGRAM_EXT


Constant GL_PROXY_PIXEL_TRANSFORM_COLOR_TABLE_EXT

constant int GL.GL_PROXY_PIXEL_TRANSFORM_COLOR_TABLE_EXT


Constant GL_PROXY_POST_CONVOLUTION_COLOR_TABLE_SGI

constant int GL.GL_PROXY_POST_CONVOLUTION_COLOR_TABLE_SGI


Constant GL_PROXY_TEXTURE_1D

constant int GL.GL_PROXY_TEXTURE_1D

Description

Used in glGetTexLevelParameter, glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev, glNewList, glEndList and glTexImage1D


Constant GL_PROXY_TEXTURE_2D

constant int GL.GL_PROXY_TEXTURE_2D

Description

Used in glGetTexLevelParameter, glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev, glNewList, glTexImage2D and glEndList


Constant GL_PROXY_TEXTURE_3D_EXT

constant int GL.GL_PROXY_TEXTURE_3D_EXT


Constant GL_PROXY_TEXTURE_COLOR_TABLE_SGI

constant int GL.GL_PROXY_TEXTURE_COLOR_TABLE_SGI


Constant GL_Q

constant int GL.GL_Q

Description

Used in glGetTexGen, glEnd, glDrawElements, glDrawArrays, glGetLight, glBegin, glLight, glEvalMesh and glTexGen


Constant GL_QUADRATIC_ATTENUATION

constant int GL.GL_QUADRATIC_ATTENUATION

Description

Used in glGetLight and glLight


Constant GL_QUADS

constant int GL.GL_QUADS

Description

Used in glEnd, glDrawElements, glDrawArrays and glBegin


Constant GL_QUAD_STRIP

constant int GL.GL_QUAD_STRIP

Description

Used in glEnd, glDrawElements, glDrawArrays, glBegin and glEvalMesh


Constant GL_R

constant int GL.GL_R

Description

Used in glPixelStore, glTexEnv, glRenderMode, glGetTexGen, glGetIntegerv, glCopyTexSubImage2D, glDrawPixels, glCopyTexImage1D, glTexSubImage2D, glPopAttrib, glPixelTransfer, glGetTexParameter, glGetBooleanv, glGetTexImage, glPushAttrib, glGetFloatv, glAccum, glReadBuffer, glGetDoublev, glReadPixels, glCopyTexImage2D, glTexImage2D, glStencilOp, glGetString, glTexParameter, glTexSubImage1D, glDrawBuffer, glTexImage1D, glCopyTexSubImage1D and glTexGen


Constant GL_R3_G3_B2

constant int GL.GL_R3_G3_B2

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_READ_BUFFER

constant int GL.GL_READ_BUFFER

Description

Used in glGetIntegerv, glCopyTexSubImage2D, glCopyTexImage1D, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev, glCopyTexImage2D and glCopyTexSubImage1D


Constant GL_RED

constant int GL.GL_RED

Description

Used in glGetIntegerv, glDrawPixels, glTexSubImage2D, glPopAttrib, glPixelTransfer, glGetBooleanv, glGetTexImage, glPushAttrib, glGetFloatv, glGetDoublev, glReadPixels, glTexImage2D, glTexSubImage1D and glTexImage1D


Constant GL_REDUCE_EXT

constant int GL.GL_REDUCE_EXT


Constant GL_RED_BIAS

constant int GL.GL_RED_BIAS

Description

Used in glGetIntegerv, glPopAttrib, glPixelTransfer, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_RED_BITS

constant int GL.GL_RED_BITS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_RED_SCALE

constant int GL.GL_RED_SCALE

Description

Used in glGetIntegerv, glPopAttrib, glPixelTransfer, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_RENDER

constant int GL.GL_RENDER

Description

Used in glRenderMode, glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glGetString


Constant GL_RENDERER

constant int GL.GL_RENDERER

Description

Used in glGetString


Constant GL_RENDER_MODE

constant int GL.GL_RENDER_MODE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_REPEAT

constant int GL.GL_REPEAT

Description

Used in glGetTexParameter and glTexParameter


Constant GL_REPLACE

constant int GL.GL_REPLACE

Description

Used in glTexEnv and glStencilOp


Constant GL_REPLICATE_BORDER_HP

constant int GL.GL_REPLICATE_BORDER_HP


Constant GL_RESCALE_NORMAL_EXT

constant int GL.GL_RESCALE_NORMAL_EXT


Constant GL_RETURN

constant int GL.GL_RETURN

Description

Used in glAccum


Constant GL_RGB

constant int GL.GL_RGB

Description

Used in glPixelStore, glTexEnv, glGetIntegerv, glDrawPixels, glCopyTexImage1D, glTexSubImage2D, glGetBooleanv, glGetTexImage, glGetFloatv, glGetDoublev, glReadPixels, glCopyTexImage2D, glTexImage2D, glTexSubImage1D and glTexImage1D


Constant GL_RGB10

constant int GL.GL_RGB10

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_RGB10_A2

constant int GL.GL_RGB10_A2

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_RGB12

constant int GL.GL_RGB12

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_RGB16

constant int GL.GL_RGB16

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_RGB4

constant int GL.GL_RGB4

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_RGB5

constant int GL.GL_RGB5

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_RGB5_A1

constant int GL.GL_RGB5_A1

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_RGB8

constant int GL.GL_RGB8

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_RGBA

constant int GL.GL_RGBA

Description

Used in glTexEnv, glGetIntegerv, glDrawPixels, glCopyTexImage1D, glTexSubImage2D, glGetBooleanv, glGetTexImage, glGetFloatv, glGetDoublev, glReadPixels, glCopyTexImage2D, glTexImage2D, glTexSubImage1D and glTexImage1D


Constant GL_RGBA12

constant int GL.GL_RGBA12

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_RGBA16

constant int GL.GL_RGBA16

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_RGBA2

constant int GL.GL_RGBA2

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_RGBA4

constant int GL.GL_RGBA4

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_RGBA8

constant int GL.GL_RGBA8

Description

Used in glCopyTexImage1D, glCopyTexImage2D, glTexImage2D and glTexImage1D


Constant GL_RGBA_MODE

constant int GL.GL_RGBA_MODE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_RIGHT

constant int GL.GL_RIGHT

Description

Used in glReadBuffer and glDrawBuffer


Constant GL_S

constant int GL.GL_S

Description

Used in glPushMatrix, glLoadName, glIsEnabled, glPushName, glRenderMode, glGetTexGen, glGetIntegerv, glColorMaterial, glGetError, glDrawPixels, glBlendFunc, glVertexPointer, glSelectBuffer, glGetLight, glInitNames, glDisable, glColorPointer, glTexSubImage2D, glNormalPointer, glPopAttrib, glEnable, glGetPointerv, glPopName, glLogicOp, glGetBooleanv, glGetTexImage, glPushAttrib, glGetFloatv, glMaterial, glGetDoublev, glCallLists, glShadeModel, glReadPixels, glTexImage2D, glLight, glPopClientAttrib, glStencilOp, glTexCoordPointer, glCopyPixels, glIndexPointer, glPushClientAttrib, glScissor, glTexSubImage1D, glTexImage1D, glStencilFunc, glGetMaterial, glClear, glPopMatrix and glTexGen


Constant GL_SCISSOR_BIT

constant int GL.GL_SCISSOR_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_SCISSOR_BOX

constant int GL.GL_SCISSOR_BOX

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_SCISSOR_TEST

constant int GL.GL_SCISSOR_TEST

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glScissor


Constant GL_SELECT

constant int GL.GL_SELECT

Description

Used in glLoadName, glPushName, glRenderMode, glSelectBuffer, glInitNames, glGetPointerv and glPopName


Constant GL_SELECTION_BUFFER_POINTER

constant int GL.GL_SELECTION_BUFFER_POINTER

Description

Used in glGetPointerv


Constant GL_SELECTION_BUFFER_SIZE

constant int GL.GL_SELECTION_BUFFER_SIZE


Constant GL_SEPARABLE_2D_EXT

constant int GL.GL_SEPARABLE_2D_EXT


Constant GL_SET

constant int GL.GL_SET

Description

Used in glLogicOp


Constant GL_SGI_color_table

constant int GL.GL_SGI_color_table


Constant GL_SGI_texture_color_table

constant int GL.GL_SGI_texture_color_table


Constant GL_SHADE_MODEL

constant int GL.GL_SHADE_MODEL

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_SHININESS

constant int GL.GL_SHININESS

Description

Used in glMaterial and glGetMaterial


Constant GL_SHORT

constant int GL.GL_SHORT

Description

Used in glDrawPixels, glVertexPointer, glColorPointer, glTexSubImage2D, glNormalPointer, glGetTexImage, glCallLists, glReadPixels, glTexImage2D, glTexCoordPointer, glIndexPointer, glTexSubImage1D and glTexImage1D


Constant GL_SMOOTH

constant int GL.GL_SMOOTH

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glShadeModel


Constant GL_SPECULAR

constant int GL.GL_SPECULAR

Description

Used in glColorMaterial, glGetLight, glMaterial, glLight and glGetMaterial


Constant GL_SPHERE_MAP

constant int GL.GL_SPHERE_MAP

Description

Used in glTexGen


Constant GL_SPOT_CUTOFF

constant int GL.GL_SPOT_CUTOFF

Description

Used in glGetLight and glLight


Constant GL_SPOT_DIRECTION

constant int GL.GL_SPOT_DIRECTION

Description

Used in glGetLight and glLight


Constant GL_SPOT_EXPONENT

constant int GL.GL_SPOT_EXPONENT

Description

Used in glGetLight and glLight


Constant GL_SRC_ALPHA

constant int GL.GL_SRC_ALPHA

Description

Used in glBlendFunc


Constant GL_SRC_ALPHA_SATURATE

constant int GL.GL_SRC_ALPHA_SATURATE

Description

Used in glBlendFunc


Constant GL_SRC_COLOR

constant int GL.GL_SRC_COLOR

Description

Used in glBlendFunc


Constant GL_STACK_OVERFLOW

constant int GL.GL_STACK_OVERFLOW

Description

Used in glPushMatrix, glPushName, glGetError, glPopAttrib, glPopName, glPushAttrib, glPopClientAttrib, glPushClientAttrib and glPopMatrix


Constant GL_STACK_UNDERFLOW

constant int GL.GL_STACK_UNDERFLOW

Description

Used in glPushMatrix, glPushName, glGetError, glPopAttrib, glPopName, glPushAttrib, glPopClientAttrib, glPushClientAttrib and glPopMatrix


Constant GL_STENCIL

constant int GL.GL_STENCIL

Description

Used in glIsEnabled, glGetIntegerv, glDrawPixels, glDisable, glPopAttrib, glEnable, glGetBooleanv, glGetTexImage, glPushAttrib, glGetFloatv, glGetDoublev, glReadPixels, glTexImage2D, glStencilOp, glCopyPixels, glTexImage1D, glStencilFunc and glClear


Constant GL_STENCIL_BITS

constant int GL.GL_STENCIL_BITS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glStencilOp


Constant GL_STENCIL_BUFFER_BIT

constant int GL.GL_STENCIL_BUFFER_BIT

Description

Used in glPopAttrib, glPushAttrib and glClear


Constant GL_STENCIL_CLEAR_VALUE

constant int GL.GL_STENCIL_CLEAR_VALUE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_STENCIL_FAIL

constant int GL.GL_STENCIL_FAIL

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_STENCIL_FUNC

constant int GL.GL_STENCIL_FUNC

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_STENCIL_INDEX

constant int GL.GL_STENCIL_INDEX

Description

Used in glDrawPixels, glGetTexImage, glReadPixels, glTexImage2D and glTexImage1D


Constant GL_STENCIL_PASS_DEPTH_FAIL

constant int GL.GL_STENCIL_PASS_DEPTH_FAIL

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_STENCIL_PASS_DEPTH_PASS

constant int GL.GL_STENCIL_PASS_DEPTH_PASS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_STENCIL_REF

constant int GL.GL_STENCIL_REF

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_STENCIL_TEST

constant int GL.GL_STENCIL_TEST

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glPopAttrib, glEnable, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev, glStencilOp and glStencilFunc


Constant GL_STENCIL_VALUE_MASK

constant int GL.GL_STENCIL_VALUE_MASK

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_STENCIL_WRITEMASK

constant int GL.GL_STENCIL_WRITEMASK

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_STEREO

constant int GL.GL_STEREO

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_SUBPIXEL_BITS

constant int GL.GL_SUBPIXEL_BITS

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_SUNX_geometry_compression

constant int GL.GL_SUNX_geometry_compression


Constant GL_SUNX_surface_hint

constant int GL.GL_SUNX_surface_hint


Constant GL_SUN_convolution_border_modes

constant int GL.GL_SUN_convolution_border_modes


Constant GL_SUN_multi_draw_arrays

constant int GL.GL_SUN_multi_draw_arrays


Constant GL_SURFACE_SIZE_HINT_SUNX

constant int GL.GL_SURFACE_SIZE_HINT_SUNX


Constant GL_T

constant int GL.GL_T

Description

Used in glPushMatrix, glMatrixMode, glIsEnabled, glGetTexLevelParameter, glTexEnv, glIsList, glAreTexturesResident, glGetTexGen, glGetIntegerv, glEnd, glIsTexture, glDrawElements, glDrawArrays, glCopyTexSubImage2D, glBindTexture, glDisable, glCopyTexImage1D, glTexSubImage2D, glEdgeFlag, glPopAttrib, glEnable, glColorMask, glEnableClientState, glGetPointerv, glGetTexParameter, glGetBooleanv, glGetTexImage, glPushAttrib, glGetFloatv, glGetDoublev, glInterleavedArrays, glReadPixels, glCopyTexImage2D, glTexImage2D, glGetTexEnv, glBegin, glTexCoordPointer, glTexParameter, glDisableClientState, glTexSubImage1D, glEdgeFlagv, glTexImage1D, glCopyTexSubImage1D, glPopMatrix and glTexGen


Constant GL_T2F_C3F_V3F

constant int GL.GL_T2F_C3F_V3F

Description

Used in glInterleavedArrays


Constant GL_T2F_C4F_N3F_V3F

constant int GL.GL_T2F_C4F_N3F_V3F

Description

Used in glInterleavedArrays


Constant GL_T2F_C4UB_V3F

constant int GL.GL_T2F_C4UB_V3F

Description

Used in glInterleavedArrays


Constant GL_T2F_N3F_V3F

constant int GL.GL_T2F_N3F_V3F

Description

Used in glInterleavedArrays


Constant GL_T2F_V3F

constant int GL.GL_T2F_V3F

Description

Used in glInterleavedArrays


Constant GL_T4F_C4F_N3F_V4F

constant int GL.GL_T4F_C4F_N3F_V4F

Description

Used in glInterleavedArrays


Constant GL_T4F_V4F

constant int GL.GL_T4F_V4F

Description

Used in glInterleavedArrays


Constant GL_TABLE_TOO_LARGE_EXT

constant int GL.GL_TABLE_TOO_LARGE_EXT


Constant GL_TEXTURE

constant int GL.GL_TEXTURE

Description

Used in glPushMatrix, glMatrixMode, glIsEnabled, glGetTexLevelParameter, glTexEnv, glAreTexturesResident, glGetTexGen, glGetIntegerv, glCopyTexSubImage2D, glBindTexture, glDisable, glCopyTexImage1D, glTexSubImage2D, glPopAttrib, glEnable, glEnableClientState, glGetPointerv, glGetTexParameter, glGetBooleanv, glGetTexImage, glPushAttrib, glGetFloatv, glGetDoublev, glCopyTexImage2D, glTexImage2D, glGetTexEnv, glTexCoordPointer, glTexParameter, glDisableClientState, glTexSubImage1D, glTexImage1D, glCopyTexSubImage1D, glPopMatrix and glTexGen


Constant GL_TEXTURE_1D

constant int GL.GL_TEXTURE_1D

Description

Used in glIsEnabled, glGetTexLevelParameter, glGetIntegerv, glBindTexture, glDisable, glCopyTexImage1D, glPopAttrib, glEnable, glGetTexParameter, glGetBooleanv, glGetTexImage, glPushAttrib, glGetFloatv, glGetDoublev, glTexParameter, glTexSubImage1D, glTexImage1D and glCopyTexSubImage1D


Constant GL_TEXTURE_2D

constant int GL.GL_TEXTURE_2D

Description

Used in glIsEnabled, glGetTexLevelParameter, glGetIntegerv, glCopyTexSubImage2D, glBindTexture, glDisable, glTexSubImage2D, glPopAttrib, glEnable, glGetTexParameter, glGetBooleanv, glGetTexImage, glPushAttrib, glGetFloatv, glGetDoublev, glCopyTexImage2D, glTexImage2D and glTexParameter


Constant GL_TEXTURE_3D_EXT

constant int GL.GL_TEXTURE_3D_EXT


Constant GL_TEXTURE_ALPHA_SIZE

constant int GL.GL_TEXTURE_ALPHA_SIZE

Description

Used in glGetTexLevelParameter


Constant GL_TEXTURE_BINDING_1D

constant int GL.GL_TEXTURE_BINDING_1D


Constant GL_TEXTURE_BINDING_2D

constant int GL.GL_TEXTURE_BINDING_2D


Constant GL_TEXTURE_BIT

constant int GL.GL_TEXTURE_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_TEXTURE_BLUE_SIZE

constant int GL.GL_TEXTURE_BLUE_SIZE

Description

Used in glGetTexLevelParameter


Constant GL_TEXTURE_BORDER

constant int GL.GL_TEXTURE_BORDER

Description

Used in glGetTexLevelParameter, glCopyTexSubImage2D, glGetTexParameter, glTexParameter, glTexSubImage1D and glCopyTexSubImage1D


Constant GL_TEXTURE_BORDER_COLOR

constant int GL.GL_TEXTURE_BORDER_COLOR

Description

Used in glGetTexParameter and glTexParameter


Constant GL_TEXTURE_COLOR_TABLE_SGI

constant int GL.GL_TEXTURE_COLOR_TABLE_SGI


Constant GL_TEXTURE_COMPONENTS

constant int GL.GL_TEXTURE_COMPONENTS


Constant GL_TEXTURE_COORD_ARRAY

constant int GL.GL_TEXTURE_COORD_ARRAY

Description

Used in glIsEnabled, glGetIntegerv, glEnableClientState, glGetPointerv, glGetBooleanv, glGetFloatv, glGetDoublev, glTexCoordPointer and glDisableClientState


Constant GL_TEXTURE_COORD_ARRAY_POINTER

constant int GL.GL_TEXTURE_COORD_ARRAY_POINTER

Description

Used in glGetPointerv


Constant GL_TEXTURE_COORD_ARRAY_SIZE

constant int GL.GL_TEXTURE_COORD_ARRAY_SIZE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_TEXTURE_COORD_ARRAY_STRIDE

constant int GL.GL_TEXTURE_COORD_ARRAY_STRIDE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_TEXTURE_COORD_ARRAY_TYPE

constant int GL.GL_TEXTURE_COORD_ARRAY_TYPE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_TEXTURE_DEPTH_EXT

constant int GL.GL_TEXTURE_DEPTH_EXT


Constant GL_TEXTURE_ENV

constant int GL.GL_TEXTURE_ENV

Description

Used in glTexEnv and glGetTexEnv


Constant GL_TEXTURE_ENV_COLOR

constant int GL.GL_TEXTURE_ENV_COLOR

Description

Used in glTexEnv and glGetTexEnv


Constant GL_TEXTURE_ENV_MODE

constant int GL.GL_TEXTURE_ENV_MODE

Description

Used in glTexEnv and glGetTexEnv


Constant GL_TEXTURE_GEN_MODE

constant int GL.GL_TEXTURE_GEN_MODE

Description

Used in glGetTexGen, glPopAttrib, glPushAttrib and glTexGen


Constant GL_TEXTURE_GEN_Q

constant int GL.GL_TEXTURE_GEN_Q

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glEnable, glGetBooleanv, glGetFloatv, glGetDoublev and glTexGen


Constant GL_TEXTURE_GEN_R

constant int GL.GL_TEXTURE_GEN_R

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glEnable, glGetBooleanv, glGetFloatv, glGetDoublev and glTexGen


Constant GL_TEXTURE_GEN_S

constant int GL.GL_TEXTURE_GEN_S

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glEnable, glGetBooleanv, glGetFloatv, glGetDoublev and glTexGen


Constant GL_TEXTURE_GEN_T

constant int GL.GL_TEXTURE_GEN_T

Description

Used in glIsEnabled, glGetIntegerv, glDisable, glEnable, glGetBooleanv, glGetFloatv, glGetDoublev and glTexGen


Constant GL_TEXTURE_GREEN_SIZE

constant int GL.GL_TEXTURE_GREEN_SIZE

Description

Used in glGetTexLevelParameter


Constant GL_TEXTURE_HEIGHT

constant int GL.GL_TEXTURE_HEIGHT

Description

Used in glGetTexLevelParameter, glCopyTexSubImage2D and glTexSubImage2D


Constant GL_TEXTURE_INTENSITY_SIZE

constant int GL.GL_TEXTURE_INTENSITY_SIZE

Description

Used in glGetTexLevelParameter


Constant GL_TEXTURE_INTERNAL_FORMAT

constant int GL.GL_TEXTURE_INTERNAL_FORMAT

Description

Used in glGetTexLevelParameter


Constant GL_TEXTURE_LUMINANCE_SIZE

constant int GL.GL_TEXTURE_LUMINANCE_SIZE

Description

Used in glGetTexLevelParameter


Constant GL_TEXTURE_MAG_FILTER

constant int GL.GL_TEXTURE_MAG_FILTER

Description

Used in glGetTexParameter and glTexParameter


Constant GL_TEXTURE_MATRIX

constant int GL.GL_TEXTURE_MATRIX

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_TEXTURE_MIN_FILTER

constant int GL.GL_TEXTURE_MIN_FILTER

Description

Used in glGetTexParameter and glTexParameter


Constant GL_TEXTURE_PRIORITY

constant int GL.GL_TEXTURE_PRIORITY

Description

Used in glGetTexParameter and glTexParameter


Constant GL_TEXTURE_RED_SIZE

constant int GL.GL_TEXTURE_RED_SIZE

Description

Used in glGetTexLevelParameter


Constant GL_TEXTURE_RESIDENT

constant int GL.GL_TEXTURE_RESIDENT

Description

Used in glAreTexturesResident and glGetTexParameter


Constant GL_TEXTURE_STACK_DEPTH

constant int GL.GL_TEXTURE_STACK_DEPTH

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_TEXTURE_WIDTH

constant int GL.GL_TEXTURE_WIDTH

Description

Used in glGetTexLevelParameter, glCopyTexSubImage2D, glTexSubImage2D, glTexSubImage1D and glCopyTexSubImage1D


Constant GL_TEXTURE_WRAP_R_EXT

constant int GL.GL_TEXTURE_WRAP_R_EXT


Constant GL_TEXTURE_WRAP_S

constant int GL.GL_TEXTURE_WRAP_S

Description

Used in glGetTexParameter and glTexParameter


Constant GL_TEXTURE_WRAP_T

constant int GL.GL_TEXTURE_WRAP_T

Description

Used in glGetTexParameter and glTexParameter


Constant GL_TRANSFORM_BIT

constant int GL.GL_TRANSFORM_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_TRIANGLES

constant int GL.GL_TRIANGLES

Description

Used in glEnd, glDrawElements, glDrawArrays and glBegin


Constant GL_TRIANGLE_FAN

constant int GL.GL_TRIANGLE_FAN

Description

Used in glEnd, glDrawElements, glDrawArrays and glBegin


Constant GL_TRIANGLE_STRIP

constant int GL.GL_TRIANGLE_STRIP

Description

Used in glEnd, glDrawElements, glDrawArrays and glBegin


Constant GL_TRUE

constant int GL.GL_TRUE

Description

Used in glIsEnabled, glIsList, glAreTexturesResident, glGetIntegerv, glIsTexture, glDisable, glEdgeFlag, glEnable, glColorMask, glGetTexParameter, glGetBooleanv, glGetFloatv, glGetDoublev, glReadPixels and glEdgeFlagv


Constant GL_UNPACK_ALIGNMENT

constant int GL.GL_UNPACK_ALIGNMENT

Description

Used in glPixelStore, glGetIntegerv, glDrawPixels, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_UNPACK_IMAGE_HEIGHT_EXT

constant int GL.GL_UNPACK_IMAGE_HEIGHT_EXT


Constant GL_UNPACK_LSB_FIRST

constant int GL.GL_UNPACK_LSB_FIRST

Description

Used in glPixelStore, glGetIntegerv, glDrawPixels, glGetBooleanv, glGetFloatv, glGetDoublev, glTexImage2D, glTexImage1D and glPolygonStipple


Constant GL_UNPACK_ROW_LENGTH

constant int GL.GL_UNPACK_ROW_LENGTH

Description

Used in glPixelStore, glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_UNPACK_SKIP_IMAGES_EXT

constant int GL.GL_UNPACK_SKIP_IMAGES_EXT


Constant GL_UNPACK_SKIP_PIXELS

constant int GL.GL_UNPACK_SKIP_PIXELS

Description

Used in glPixelStore, glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_UNPACK_SKIP_ROWS

constant int GL.GL_UNPACK_SKIP_ROWS

Description

Used in glPixelStore, glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_UNPACK_SWAP_BYTES

constant int GL.GL_UNPACK_SWAP_BYTES

Description

Used in glPixelStore, glGetIntegerv, glGetBooleanv, glGetFloatv, glGetDoublev and glPolygonStipple


Constant GL_UNSIGNED_BYTE

constant int GL.GL_UNSIGNED_BYTE

Description

Used in glDrawElements, glDrawPixels, glColorPointer, glTexSubImage2D, glGetTexImage, glCallLists, glReadPixels, glTexImage2D, glIndexPointer, glTexSubImage1D and glTexImage1D


Constant GL_UNSIGNED_INT

constant int GL.GL_UNSIGNED_INT

Description

Used in glDrawElements, glDrawPixels, glColorPointer, glTexSubImage2D, glGetTexImage, glCallLists, glReadPixels, glTexImage2D, glTexSubImage1D and glTexImage1D


Constant GL_UNSIGNED_INT_8_8_8_8

constant int GL.GL_UNSIGNED_INT_8_8_8_8


Constant GL_UNSIGNED_INT_8_8_8_8_REV

constant int GL.GL_UNSIGNED_INT_8_8_8_8_REV


Constant GL_UNSIGNED_SHORT

constant int GL.GL_UNSIGNED_SHORT

Description

Used in glDrawElements, glDrawPixels, glColorPointer, glTexSubImage2D, glGetTexImage, glCallLists, glReadPixels, glTexImage2D, glTexSubImage1D and glTexImage1D


Constant GL_V2F

constant int GL.GL_V2F

Description

Used in glInterleavedArrays


Constant GL_V3F

constant int GL.GL_V3F

Description

Used in glInterleavedArrays


Constant GL_VENDOR

constant int GL.GL_VENDOR

Description

Used in glGetString


Constant GL_VERSION

constant int GL.GL_VERSION

Description

Used in glGetString


Constant GL_VERSION_1_1

constant int GL.GL_VERSION_1_1


Constant GL_VERTEX_ARRAY

constant int GL.GL_VERTEX_ARRAY

Description

Used in glIsEnabled, glArrayElement, glGetIntegerv, glDrawElements, glDrawArrays, glVertexPointer, glEnableClientState, glGetPointerv, glGetBooleanv, glGetFloatv, glGetDoublev and glDisableClientState


Constant GL_VERTEX_ARRAY_POINTER

constant int GL.GL_VERTEX_ARRAY_POINTER

Description

Used in glGetPointerv


Constant GL_VERTEX_ARRAY_SIZE

constant int GL.GL_VERTEX_ARRAY_SIZE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_VERTEX_ARRAY_STRIDE

constant int GL.GL_VERTEX_ARRAY_STRIDE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_VERTEX_ARRAY_TYPE

constant int GL.GL_VERTEX_ARRAY_TYPE

Description

Used in glGetIntegerv, glGetBooleanv, glGetFloatv and glGetDoublev


Constant GL_VIEWPORT

constant int GL.GL_VIEWPORT

Description

Used in glGetIntegerv, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv and glGetDoublev


Constant GL_VIEWPORT_BIT

constant int GL.GL_VIEWPORT_BIT

Description

Used in glPopAttrib and glPushAttrib


Constant GL_WRAP_BORDER_SUN

constant int GL.GL_WRAP_BORDER_SUN


Constant GL_XOR

constant int GL.GL_XOR

Description

Used in glLogicOp


Constant GL_ZERO

constant int GL.GL_ZERO

Description

Used in glGetIntegerv, glBlendFunc, glGetBooleanv, glGetFloatv, glGetDoublev and glStencilOp


Constant GL_ZOOM_X

constant int GL.GL_ZOOM_X

Description

Used in glGetIntegerv, glDrawPixels, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glCopyPixels


Constant GL_ZOOM_Y

constant int GL.GL_ZOOM_Y

Description

Used in glGetIntegerv, glDrawPixels, glPopAttrib, glGetBooleanv, glPushAttrib, glGetFloatv, glGetDoublev and glCopyPixels


Method glAccum

void glAccum(int op, float value)

Description

The accumulation buffer is an extended-range color buffer. Images are not rendered into it. Rather, images rendered into one of the color buffers are added to the contents of the accumulation buffer after rendering. Effects such as antialiasing (of points, lines, and polygons), motion blur, and depth of field can be created by accumulating images generated with different transformation matrices.

Each pixel in the accumulation buffer consists of red, green, blue, and alpha values. The number of bits per component in the accumulation buffer depends on the implementation. You can examine this number by calling glGetIntegerv four times, with arguments GL_ACCUM_RED_BITS, GL_ACCUM_GREEN_BITS, GL_ACCUM_BLUE_BITS, and GL_ACCUM_ALPHA_BITS. Regardless of the number of bits per component, the range of values stored by each component is [-1, 1]. The accumulation buffer pixels are mapped one-to-one with frame buffer pixels.

glAccum operates on the accumulation buffer. The first argument, op, is a symbolic constant that selects an accumulation buffer operation. The second argument, value, is a floating-point value to be used in that operation. Five operations are specified: GL_ACCUM, GL_LOAD, GL_ADD, GL_MULT, and GL_RETURN.

All accumulation buffer operations are limited to the area of the current scissor box and applied identically to the red, green, blue, and alpha components of each pixel. If a glAccum operation results in a value outside the range [-1, 1], the contents of an accumulation buffer pixel component are undefined.

The operations are as follows:

GL_ACCUM Obtains R, G, B, and A values from the buffer currently selected for reading (see glReadBuffer). Each component value is divided by 2n1, where n is the number of bits allocated to each color component in the currently selected buffer. The result is a floating-point value in the range [0, 1], which is multiplied by value and added to the corresponding pixel component in the accumulation buffer, thereby updating the accumulation buffer.
GL_LOAD Similar to GL_ACCUM, except that the current value in the accumulation buffer is not used in the calculation of the new value. That is, the R, G, B, and A values from the currently selected buffer are divided by 2n1, multiplied by value, and then stored in the corresponding accumulation buffer cell, overwriting the current value.
GL_ADD Adds value to each R, G, B, and A in the accumulation buffer.
GL_MULT Multiplies each R, G, B, and A in the accumulation buffer by value and returns the scaled component to its corresponding accumulation buffer location.
GL_RETURN Transfers accumulation buffer values to the color buffer or buffers currently selected for writing. Each R, G, B, and A component is multiplied by value, then multiplied by 2n1, clamped to the range [0, 2n1 ], and stored in the corresponding display buffer cell. The only fragment operations that are applied to this transfer are pixel ownership, scissor, dithering, and color writemasks.

To clear the accumulation buffer, call glClearAccum with R, G, B, and A values to set it to, then call glClear with the accumulation buffer enabled.

Parameter op

Specifies the accumulation buffer operation. Symbolic constants GL_ACCUM, GL_LOAD, GL_ADD, GL_MULT, and GL_RETURN are accepted.

Parameter value

Specifies a floating-point value used in the accumulation buffer operation. op determines how value is used.

Throws

GL_INVALID_ENUM is generated if op is not an accepted value.

GL_INVALID_OPERATION is generated if there is no accumulation buffer.

GL_INVALID_OPERATION is generated if glAccum is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glAlphaFunc

void glAlphaFunc(int func, float ref)

Description

The alpha test discards fragments depending on the outcome of a comparison between an incoming fragment's alpha value and a constant reference value. glAlphaFunc specifies the reference value and the comparison function. The comparison is performed only if alpha testing is enabled. By default, it is not enabled. (See glEnable and glDisable of GL_ALPHA_TEST.)

func and ref specify the conditions under which the pixel is drawn. The incoming alpha value is compared to ref using the function specified by func. If the value passes the comparison, the incoming fragment is drawn if it also passes subsequent stencil and depth buffer tests. If the value fails the comparison, no change is made to the frame buffer at that pixel location. The comparison functions are as follows:

GL_NEVER Never passes.
GL_LESS Passes if the incoming alpha value is less than the reference value.
GL_EQUAL Passes if the incoming alpha value is equal to the reference value.
GL_LEQUAL Passes if the incoming alpha value is less than or equal to the reference value.
GL_GREATER Passes if the incoming alpha value is greater than the reference value.
GL_NOTEQUAL Passes if the incoming alpha value is not equal to the reference value.
GL_GEQUAL Passes if the incoming alpha value is greater than or equal to the reference value.
GL_ALWAYS Always passes (initial value).

glAlphaFunc operates on all pixel write operations, including those resulting from the scan conversion of points, lines, polygons, and bitmaps, and from pixel draw and copy operations. glAlphaFunc does not affect screen clear operations.

Parameter func

Specifies the alpha comparison function. Symbolic constants GL_NEVER, GL_LESS, GL_EQUAL, GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, and GL_ALWAYS are accepted. The initial value is GL_ALWAYS.

Parameter ref

Specifies the reference value that incoming alpha values are compared to. This value is clamped to the range 0 through 1, where 0 represents the lowest possible alpha value and 1 the highest possible value. The initial reference value is 0.

Throws

GL_INVALID_ENUM is generated if func is not an accepted value.

GL_INVALID_OPERATION is generated if glAlphaFunc is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glArrayElement

void glArrayElement(int i)

Description

glArrayElement commands are used within glBegin/glEnd pairs to specify vertex and attribute data for point, line, and polygon primitives. If GL_VERTEX_ARRAY is enabled when glArrayElement is called, a single vertex is drawn, using vertex and attribute data taken from location i of the enabled arrays. If GL_VERTEX_ARRAY is not enabled, no drawing occurs but the attributes corresponding to the enabled arrays are modified.

Use glArrayElement to construct primitives by indexing vertex data, rather than by streaming through arrays of data in first-to-last order. Because each call specifies only a single vertex, it is possible to explicitly specify per-primitive attributes such as a single normal per individual triangle.

Changes made to array data between the execution of glBegin and the corresponding execution of glEnd may affect calls to glArrayElement that are made within the same glBegin/glEnd period in non-sequential ways. That is, a call to

glArrayElement that precedes a change to array data may access the changed data, and a call that follows a change to array data may access original data.

Parameter i

Specifies an index into the enabled vertex data arrays.


Method glBegin

void glBegin(int mode)

Description

glBegin and glEnd delimit the vertices that define a primitive or a group of like primitives. glBegin accepts a single argument that specifies in which of ten ways the vertices are interpreted. Taking n as an integer count starting at one, and N as the total number of vertices specified, the interpretations are as follows:

GL_POINTS Treats each vertex as a single point. Vertex n defines point n. N points are drawn.
GL_LINES Treats each pair of vertices as an independent line segment. Vertices 2n-1 and 2n define line n. N/2 lines are drawn.
GL_LINE_STRIP Draws a connected group of line segments from the first vertex to the last. Vertices n and n+1 define line n. N-1 lines are drawn.
GL_LINE_LOOP Draws a connected group of line segments from the first vertex to the last, then back to the first. Vertices n and n+1 define line n. The last line, however, is defined by vertices N and 1. N lines are drawn.
GL_TRIANGLES Treats each triplet of vertices as an independent triangle. Vertices 3n-2, 3n-1, and 3n define triangle n. N/3 triangles are drawn.
GL_TRIANGLE_STRIP Draws a connected group of triangles. One triangle is defined for each vertex presented after the first two vertices. For odd n, vertices n, n+1, and n+2 define triangle n. For even n, vertices n+1, n, and n+2 define triangle n. N-2 triangles are drawn.
GL_TRIANGLE_FAN Draws a connected group of triangles. One triangle is defined for each vertex presented after the first two vertices. Vertices 1, n+1, and n+2 define triangle n. N-2 triangles are drawn.
GL_QUADS Treats each group of four vertices as an independent quadrilateral. Vertices 4n-3, 4n-2, 4n-1, and 4n define quadrilateral n. N/4 quadrilaterals are drawn.
GL_QUAD_STRIP Draws a connected group of quadrilaterals. One quadrilateral is defined for each pair of vertices presented after the first pair. Vertices 2n-1, 2n, 2n+2, and 2n+1 define quadrilateral n. N/2-1 quadrilaterals are drawn. Note that the order in which vertices are used to construct a quadrilateral from strip data is different from that used with independent data.
GL_POLYGON Draws a single, convex polygon. Vertices 1 through N define this polygon.

Only a subset of GL commands can be used between glBegin and glEnd. The commands are glVertex, glColor, glIndex, glNormal, glTexCoord, glEvalCoord, glEvalPoint, glArrayElement, glMaterial, and glEdgeFlag. Also, it is acceptable to use glCallList or glCallLists to execute display lists that include only the preceding commands. If any other GL command is executed between glBegin and glEnd, the error flag is set and the command is ignored.

Regardless of the value chosen for mode, there is no limit to the number of vertices that can be defined between glBegin and glEnd. Lines, triangles, quadrilaterals, and polygons that are incompletely specified are not drawn. Incomplete specification results when either too few vertices are provided to specify even a single primitive or when an incorrect multiple of vertices is specified. The incomplete primitive is ignored; the rest are drawn.

The minimum specification of vertices for each primitive is as follows: 1 for a point, 2 for a line, 3 for a triangle, 4 for a quadrilateral, and 3 for a polygon. Modes that require a certain multiple of vertices are GL_LINES (2), GL_TRIANGLES (3), GL_QUADS (4), and GL_QUAD_STRIP (2).

Parameter mode

Specifies the primitive or primitives that will be created from vertices presented between glBegin and the subsequent glEnd. Ten symbolic constants are accepted: GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUADS, GL_QUAD_STRIP, and GL_POLYGON.

Throws

GL_INVALID_ENUM is generated if mode is set to an unaccepted value.

GL_INVALID_OPERATION is generated if glBegin is executed between a glBegin and the corresponding execution of glEnd.

GL_INVALID_OPERATION is generated if glEnd is executed without being preceded by a glBegin.

GL_INVALID_OPERATION is generated if a command other than glVertex, glColor, glIndex, glNormal, glTexCoord, glEvalCoord, glEvalPoint, glArrayElement, glMaterial, glEdgeFlag, glCallList, or glCallLists is executed between the execution of glBegin and the corresponding execution glEnd.

Execution of glEnableClientState, glDisableClientState, glEdgeFlagPointer, glTexCoordPointer, glColorPointer, glIndexPointer, glNormalPointer,

glVertexPointer, glInterleavedArrays, or glPixelStore is not allowed after a call to glBegin and before the corresponding call to glEnd, but an error may or may not be generated.


Method glBindTexture

void glBindTexture(int target, int texture)

Description

glBindTexture lets you create or use a named texture. Calling glBindTexture with

target set to GL_TEXTURE_1D or GL_TEXTURE_2D and texture set to the name of the newtexture binds the texture name to the target. When a texture is bound to a target, the previous binding for that target is automatically broken.

Texture names are unsigned integers. The value zero is reserved to represent the default texture for each texture target. Texture names and the corresponding texture contents are local to the shared display-list space (see glXCreateContext) of the current GL rendering context; two rendering contexts share texture names only if they also share display lists.

You may use glGenTextures to generate a set of new texture names.

When a texture is first bound, it assumes the dimensionality of its target: A texture first bound to GL_TEXTURE_1D becomes 1-dimensional and a texture first bound to GL_TEXTURE_2D becomes 2-dimensional. The state of a 1-dimensional texture immediately after it is first bound is equivalent to the state of the default GL_TEXTURE_1D at GL initialization, and similarly for 2-dimensional textures.

While a texture is bound, GL operations on the target to which it is bound affect the bound texture, and queries of the target to which it is bound return state from the bound texture. If texture mapping of the dimensionality of the target to which a texture is bound is active, the bound texture is used. In effect, the texture targets become aliases for the textures currently bound to them, and the texture name zero refers to the default textures that were bound to them at initialization.

A texture binding created with glBindTexture remains active until a different texture is bound to the same target, or until the bound texture is deleted with glDeleteTextures.

Once created, a named texture may be re-bound to the target of the matching dimensionality as often as needed. It is usually much faster to use glBindTexture to bind an existing named texture to one of the texture targets than it is to reload the texture image using glTexImage1D or glTexImage2D. For additional control over performance, use glPrioritizeTextures.

glBindTexture is included in display lists.

Parameter target

Specifies the target to which the texture is bound. Must be either GL_TEXTURE_1D or GL_TEXTURE_2D.

Parameter texture

Specifies the name of a texture.

Throws

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_OPERATION is generated if texture has a dimensionality which doesn't match that of target.

GL_INVALID_OPERATION is generated if glBindTexture is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glBlendFunc

void glBlendFunc(int sfactor, int dfactor)

Description

In RGBA mode, pixels can be drawn using a function that blends the incoming (source) RGBA values with the RGBA values that are already in the frame buffer (the destination values). Blending is initially disabled. Use glEnable and glDisable with argument GL_BLEND to enable and disable blending.

glBlendFunc defines the operation of blending when it is enabled. sfactor specifies which of nine methods is used to scale the source color components. dfactor specifies which of eight methods is used to scale the destination color components. The eleven possible methods are described in the following table. Each method defines four scale factors, one each for red, green, blue, and alpha.

In the table and in subsequent equations, source and destination color components are referred to as (R sub s , G sub s , B sub s , A sub s ) and (R sub d , G sub d , B sub d , A sub d ). They are understood to have integer values between 0 and (k sub R , k sub G , k sub B , k sub A ), where

.RS .ce k sub c ~=~ 2 sup m sub c - 1 .RE

and (m sub R , m sub G , m sub B , m sub A ) is the number of red, green, blue, and alpha bitplanes.

Source and destination scale factors are referred to as (s sub R , s sub G , s sub B , s sub A ) and (d sub R , d sub G , d sub B , d sub A ). The scale factors described in the table, denoted (f sub R , f sub G , f sub B , f sub A ), represent either source or destination factors. All scale factors have range [0,1].

.TS center box ; ci | ci c | c . parameter (f sub R , ~~ f sub G , ~~ f sub B , ~~ f sub A ) = GL_ZERO (0, ~0, ~0, ~0 ) GL_ONE (1, ~1, ~1, ~1 ) GL_SRC_COLOR (R sub s / k sub R , ~G sub s / k sub G , ~B sub s / k sub B , ~A sub s / k sub A ) GL_ONE_MINUS_SRC_COLOR (1, ~1, ~1, ~1 ) ~-~ (R sub s / k sub R , ~G sub s / k sub G , ~B sub s / k sub B , ~A sub s / k sub A ) GL_DST_COLOR (R sub d / k sub R , ~G sub d / k sub G , ~B sub d / k sub B , ~A sub d / k sub A ) GL_ONE_MINUS_DST_COLOR (1, ~1, ~1, ~1 ) ~-~ (R sub d / k sub R , ~G sub d / k sub G , ~B sub d / k sub B , ~A sub d / k sub A ) GL_SRC_ALPHA (A sub s / k sub A , ~A sub s / k sub A , ~A sub s / k sub A , ~A sub s / k sub A ) GL_ONE_MINUS_SRC_ALPHA (1, ~1, ~1, ~1 ) ~-~ (A sub s / k sub A , ~A sub s / k sub A , ~A sub s / k sub A , ~A sub s / k sub A ) GL_DST_ALPHA (A sub d / k sub A , ~A sub d / k sub A , ~A sub d / k sub A , ~A sub d / k sub A ) GL_ONE_MINUS_DST_ALPHA (1, ~1, ~1, ~1 ) ~-~ (A sub d / k sub A , ~A sub d / k sub A , ~A sub d / k sub A , ~A sub d / k sub A ) GL_SRC_ALPHA_SATURATE (i, ~i, ~i, ~1 ) .TE .sp In the table,

.RS .nf

i ~=~ min (A sub s , ~k sub A - A sub d ) ~/~ k sub A .fi .RE

To determine the blended RGBA values of a pixel when drawing in RGBA mode, the system uses the following equations:

.RS .nf

R sub d ~=~ min ( k sub R , ~~ R sub s s sub R + R sub d d sub R ) G sub d ~=~ min ( k sub G , ~~ G sub s s sub G + G sub d d sub G ) B sub d ~=~ min ( k sub B , ~~ B sub s s sub B + B sub d d sub B ) A sub d ~=~ min ( k sub A , ~~ A sub s s sub A + A sub d d sub A ) .fi .RE

Despite the apparent precision of the above equations, blending arithmetic is not exactly specified, because blending operates with imprecise integer color values. However, a blend factor that should be equal to 1 is guaranteed not to modify its multiplicand, and a blend factor equal to 0 reduces its multiplicand to 0. For example, when sfactor is GL_SRC_ALPHA, dfactor is GL_ONE_MINUS_SRC_ALPHA, and A sub s is equal to k sub A, the equations reduce to simple replacement:

.RS .nf

R sub d ~=~ R sub s G sub d ~=~ G sub s B sub d ~=~ B sub s A sub d ~=~ A sub s .fi .RE

Parameter sfactor

Specifies how the red, green, blue, and alpha source blending factors are computed. Nine symbolic constants are accepted: GL_ZERO, GL_ONE, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA, and GL_SRC_ALPHA_SATURATE. The initial value is GL_ONE.

Parameter dfactor

Specifies how the red, green, blue, and alpha destination blending factors are computed. Eight symbolic constants are accepted: GL_ZERO, GL_ONE, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA, and GL_ONE_MINUS_DST_ALPHA. The initial value is GL_ZERO.

Throws

GL_INVALID_ENUM is generated if either sfactor or dfactor is not an accepted value.

GL_INVALID_OPERATION is generated if glBlendFunc is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glCallList

void glCallList(int list)

Description

glCallList causes the named display list to be executed. The commands saved in the display list are executed in order, just as if they were called without using a display list. If list has not been defined as a display list, glCallList is ignored.

glCallList can appear inside a display list. To avoid the possibility of infinite recursion resulting from display lists calling one another, a limit is placed on the nesting level of display lists during display-list execution. This limit is at least 64, and it depends on the implementation.

GL state is not saved and restored across a call to glCallList. Thus, changes made to GL state during the execution of a display list remain after execution of the display list is completed. Use glPushAttrib, glPopAttrib, glPushMatrix, and glPopMatrix to preserve GL state across glCallList calls.

Parameter list

Specifies the integer name of the display list to be executed.


Method glClear

void glClear(int mask)

Description

glClear sets the bitplane area of the window to values previously selected by glClearColor, glClearIndex, glClearDepth, glClearStencil, and glClearAccum. Multiple color buffers can be cleared simultaneously by selecting more than one buffer at a time using glDrawBuffer.

The pixel ownership test, the scissor test, dithering, and the buffer writemasks affect the operation of glClear. The scissor box bounds the cleared region. Alpha function, blend function, logical operation, stenciling, texture mapping, and depth-buffering are ignored by glClear.

glClear takes a single argument that is the bitwise OR of several values indicating which buffer is to be cleared.

The values are as follows:

GL_COLOR_BUFFER_BIT Indicates the buffers currently enabled for color writing.
GL_DEPTH_BUFFER_BIT Indicates the depth buffer.
GL_ACCUM_BUFFER_BIT Indicates the accumulation buffer.
GL_STENCIL_BUFFER_BIT Indicates the stencil buffer.

The value to which each buffer is cleared depends on the setting of the clear value for that buffer.

Parameter mask

Bitwise OR of masks that indicate the buffers to be cleared. The four masks are GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, GL_ACCUM_BUFFER_BIT, and GL_STENCIL_BUFFER_BIT.

Throws

GL_INVALID_VALUE is generated if any bit other than the four defined bits is set in mask.

GL_INVALID_OPERATION is generated if glClear is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glClearAccum

void glClearAccum(float|array(float) red, float|void green, float|void blue, float|void alpha)

Description

glClearAccum specifies the red, green, blue, and alpha values used by glClear to clear the accumulation buffer.

Values specified by glClearAccum are clamped to the range [-1,1].

Parameter red

Specify the red, green, blue, and alpha values used when the accumulation buffer is cleared. The initial values are all 0.

Throws

GL_INVALID_OPERATION is generated if glClearAccum is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glClearColor

void glClearColor(float|array(float) red, float|void green, float|void blue, float|void alpha)

Description

glClearColor specifies the red, green, blue, and alpha values used by glClear to clear the color buffers. Values specified by glClearColor are clamped to the range [0,1].

Parameter red

Specify the red, green, blue, and alpha values used when the color buffers are cleared. The initial values are all 0.

Throws

GL_INVALID_OPERATION is generated if glClearColor is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glClearDepth

void glClearDepth(float depth)

Description

glClearDepth specifies the depth value used by glClear to clear the depth buffer. Values specified by glClearDepth are clamped to the range [0,1].

Parameter depth

Specifies the depth value used when the depth buffer is cleared. The initial value is 1.

Throws

GL_INVALID_OPERATION is generated if glClearDepth is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glClearIndex

void glClearIndex(float c)

Description

glClearIndex specifies the index used by glClear to clear the color index buffers. c is not clamped. Rather, c is converted to a fixed-point value with unspecified precision to the right of the binary point. The integer part of this value is then masked with 2 sup m -1, where m is the number of bits in a color index stored in the frame buffer.

Parameter c

Specifies the index used when the color index buffers are cleared. The initial value is 0.

Throws

GL_INVALID_OPERATION is generated if glClearIndex is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glClearStencil

void glClearStencil(int s)

Description

glClearStencil specifies the index used by glClear to clear the stencil buffer. s is masked with 2 sup m - 1, where m is the number of bits in the stencil buffer.

Parameter s

Specifies the index used when the stencil buffer is cleared. The initial value is 0.

Throws

GL_INVALID_OPERATION is generated if glClearStencil is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glColor

void glColor(float|int red, float|int green, float|int blue, float|int|void alpha)
void glColor(array(float|int) rgb)

Description

The GL stores both a current single-valued color index and a current four-valued RGBA color. If no alpha value has been give, 1.0 (full intensity) is implied.

Current color values are stored in floating-point format, with unspecified mantissa and exponent sizes. Unsigned integer color components, when specified, are linearly mapped to floating-point values such that the largest representable value maps to 1.0 (full intensity), and 0 maps to 0.0 (zero intensity). Signed integer color components, when specified, are linearly mapped to floating-point values such that the most positive representable value maps to 1.0, and the most negative representable value maps to -1.0. (Note that this mapping does not convert 0 precisely to 0.0.) Floating-point values are mapped directly.

Neither floating-point nor signed integer values are clamped to the range [0,1] before the current color is updated. However, color components are clamped to this range before they are interpolated or written into a color buffer.

Parameter red

Specify new red, green, and blue values for the current color.

Parameter alpha

Specifies a new alpha value for the current color.


Method glColorMask

void glColorMask(int red, int green, int blue, int alpha)

Description

glColorMask specifies whether the individual color components in the frame buffer can or cannot be written. If red is GL_FALSE, for example, no change is made to the red component of any pixel in any of the color buffers, regardless of the drawing operation attempted.

Changes to individual bits of components cannot be controlled. Rather, changes are either enabled or disabled for entire color components.

Parameter red

Specify whether red, green, blue, and alpha can or cannot be written into the frame buffer. The initial values are all GL_TRUE, indicating that the color components can be written.

Throws

GL_INVALID_OPERATION is generated if glColorMask is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glColorMaterial

void glColorMaterial(int face, int mode)

Description

glColorMaterial specifies which material parameters track the current color. When GL_COLOR_MATERIAL is enabled, the material parameter or parameters specified by mode, of the material or materials specified by face, track the current color at all times.

To enable and disable GL_COLOR_MATERIAL, call glEnable and glDisable with argument GL_COLOR_MATERIAL. GL_COLOR_MATERIAL is initially disabled.

Parameter face

Specifies whether front, back, or both front and back material parameters should track the current color. Accepted values are GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK. The initial value is GL_FRONT_AND_BACK.

Parameter mode

Specifies which of several material parameters track the current color. Accepted values are GL_EMISSION, GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, and GL_AMBIENT_AND_DIFFUSE. The initial value is GL_AMBIENT_AND_DIFFUSE.

Throws

GL_INVALID_ENUM is generated if face or mode is not an accepted value.

GL_INVALID_OPERATION is generated if glColorMaterial is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glCopyPixels

void glCopyPixels(int x, int y, int width, int height, int type)

Description

glCopyPixels copies a screen-aligned rectangle of pixels from the specified frame buffer location to a region relative to the current raster position. Its operation is well defined only if the entire pixel source region is within the exposed portion of the window. Results of copies from outside the window, or from regions of the window that are not exposed, are hardware dependent and undefined.

x and y specify the window coordinates of the lower left corner of the rectangular region to be copied. width and height specify the dimensions of the rectangular region to be copied. Both width and height must not be negative.

Several parameters control the processing of the pixel data while it is being copied. These parameters are set with three commands: glPixelTransfer, glPixelMap, and glPixelZoom. This reference page describes the effects on glCopyPixels of most, but not all, of the parameters specified by these three commands.

glCopyPixels copies values from each pixel with the lower left-hand corner at (x + i, y + j) for 0\(<=i<width and 0\(<=j<height. This pixel is said to be the ith pixel in the jth row. Pixels are copied in row order from the lowest to the highest row, left to right in each row.

type specifies whether color, depth, or stencil data is to be copied. The details of the transfer for each data type are as follows:

GL_COLOR Indices or RGBA colors are read from the buffer currently specified as the read source buffer (see glReadBuffer). If the GL is in color index mode, each index that is read from this buffer is converted to a fixed-point format with an unspecified number of bits to the right of the binary point. Each index is then shifted left by GL_INDEX_SHIFT bits, and added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to the right. In either case, zero bits fill otherwise unspecified bit locations in the result. If GL_MAP_COLOR is true, the index is replaced with the value that it references in lookup table GL_PIXEL_MAP_I_TO_I. Whether the lookup replacement of the index is done or not, the integer part of the index is then ANDed with 2 sup b -1, where b is the number of bits in a color index buffer. If the GL is in RGBA mode, the red, green, blue, and alpha components of each pixel that is read are converted to an internal floating-point format with unspecified precision. The conversion maps the largest representable component value to 1.0, and component value 0 to 0.0. The resulting floating-point color values are then multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN, BLUE, and ALPHA for the respective color components. The results are clamped to the range [0,1]. If GL_MAP_COLOR is true, each color component is scaled by the size of lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value that it references in that table. c is R, G, B, or A. The GL then converts the resulting indices or RGBA colors to fragments by attaching the current raster position z coordinate and texture coordinates to each pixel, then assigning window coordinates (x sub r + i , y sub r + j), where (x sub r , y sub r) is the current raster position, and the pixel was the ith pixel in the jth row. These pixel fragments are then treated just like the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment operations are applied before the fragments are written to the frame buffer.
GL_DEPTH Depth values are read from the depth buffer and converted directly to an internal floating-point format with unspecified precision. The resulting floating-point depth value is then multiplied by GL_DEPTH_SCALE and added to GL_DEPTH_BIAS. The result is clamped to the range [0,1]. The GL then converts the resulting depth components to fragments by attaching the current raster position color or color index and texture coordinates to each pixel, then assigning window coordinates (x sub r + i , y sub r + j), where (x sub r , y sub r) is the current raster position, and the pixel was the ith pixel in the jth row. These pixel fragments are then treated just like the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment operations are applied before the fragments are written to the frame buffer.
GL_STENCIL Stencil indices are read from the stencil buffer and converted to an internal fixed-point format with an unspecified number of bits to the right of the binary point. Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits, and added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to the right. In either case, zero bits fill otherwise unspecified bit locations in the result. If GL_MAP_STENCIL is true, the index is replaced with the value that it references in lookup table GL_PIXEL_MAP_S_TO_S. Whether the lookup replacement of the index is done or not, the integer part of the index is then ANDed with 2 sup b -1, where b is the number of bits in the stencil buffer. The resulting stencil indices are then written to the stencil buffer such that the index read from the ith location of the jth row is written to location (x sub r + i , y sub r + j), where (x sub r , y sub r) is the current raster position. Only the pixel ownership test, the scissor test, and the stencil writemask affect these write operations.

The rasterization described thus far assumes pixel zoom factors of 1.0. If

glPixelZoom is used to change the x and y pixel zoom factors, pixels are converted to fragments as follows. If (x sub r, y sub r) is the current raster position, and a given pixel is in the ith location in the jth row of the source pixel rectangle, then fragments are generated for pixels whose centers are in the rectangle with corners at

.ce (x sub r + zoom sub x i, y sub r + zoom sub y j) .sp .5 .ce and .sp .5 .ce (x sub r + zoom sub x (i + 1), y sub r + zoom sub y ( j + 1 ))

where zoom sub x is the value of GL_ZOOM_X and zoom sub y is the value of GL_ZOOM_Y.

Parameter x

Specify the window coordinates of the lower left corner of the rectangular region of pixels to be copied.

Parameter width

Specify the dimensions of the rectangular region of pixels to be copied. Both must be nonnegative.

Parameter type

Specifies whether color values, depth values, or stencil values are to be copied. Symbolic constants GL_COLOR, GL_DEPTH, and GL_STENCIL are accepted.

Throws

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if either width or height is negative.

GL_INVALID_OPERATION is generated if type is GL_DEPTH and there is no depth buffer.

GL_INVALID_OPERATION is generated if type is GL_STENCIL and there is no stencil buffer.

GL_INVALID_OPERATION is generated if glCopyPixels is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glCopyTexImage1D

void glCopyTexImage1D(int target, int level, int internalFormat, int x, int y, int width, int border)

Description

glCopyTexImage1D defines a one-dimensional texture image with pixels from the current GL_READ_BUFFER.

The screen-aligned pixel row with left corner at ("x", "y") and with a length of "width"~+~2~*~"border" defines the texture array at the mipmap level specified by level. internalFormat specifies the internal format of the texture array.

The pixels in the row are processed exactly as if glCopyPixels had been called, but the process stops just before final conversion. At this point all pixel component values are clamped to the range [0,\ 1] and then converted to the texture's internal format for storage in the texel array.

Pixel ordering is such that lower x screen coordinates correspond to lower texture coordinates.

If any of the pixels within the specified row of the current GL_READ_BUFFER are outside the window associated with the current rendering context, then the values obtained for those pixels are undefined.

Parameter target

Specifies the target texture. Must be GL_TEXTURE_1D.

Parameter level

Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap reduction image.

Parameter internalFormat

Specifies the internal format of the texture. Must be one of the following symbolic constants: GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4, GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY, GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGB, GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

Parameter x

Specify the window coordinates of the left corner of the row of pixels to be copied.

Parameter width

Specifies the width of the texture image. Must be 0 or 2**n ~+~ 2*border for some integer n. The height of the texture image is 1.

Parameter border

Specifies the width of the border. Must be either 0 or 1.

Throws

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_VALUE is generated if level is less than 0. .P GL_INVALID_VALUE may be generated if level is greater than log sub 2 max, where max is the returned value of GL_MAX_TEXTURE_SIZE. .P GL_INVALID_VALUE is generated if internalFormat is not an allowable value.

GL_INVALID_VALUE is generated if width is less than 0 or greater than 2 + GL_MAX_TEXTURE_SIZE, or if it cannot be represented as 2 ** n ~+~ 2~*~("border") for some integer value of n.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_OPERATION is generated if glCopyTexImage1D is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glCopyTexImage2D

void glCopyTexImage2D(int target, int level, int internalFormat, int x, int y, int width, int height, int border)

Description

glCopyTexImage2D defines a two-dimensional texture image with pixels from the current GL_READ_BUFFER.

The screen-aligned pixel rectangle with lower left corner at (x, y) and with a width of width~+~2~*~border and a height of height~+~2~*~border defines the texture array at the mipmap level specified by level. internalFormat specifies the internal format of the texture array.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but the process stops just before final conversion. At this point all pixel component values are clamped to the range [0,1] and then converted to the texture's internal format for storage in the texel array.

Pixel ordering is such that lower x and y screen coordinates correspond to lower s and t texture coordinates.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the window associated with the current rendering context, then the values obtained for those pixels are undefined.

Parameter target

Specifies the target texture. Must be GL_TEXTURE_2D.

Parameter level

Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap reduction image.

Parameter internalFormat

Specifies the internal format of the texture. Must be one of the following symbolic constants: GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4, GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY, GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGB, GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

Parameter x

Specify the window coordinates of the lower left corner of the rectangular region of pixels to be copied.

Parameter width

Specifies the width of the texture image. Must be 0 or 2**n ~+~ 2*border for some integer n.

Parameter height

Specifies the height of the texture image. Must be 0 or 2**m ~+~ 2*border for some integer m.

Parameter border

Specifies the width of the border. Must be either 0 or 1.

Throws

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D.

GL_INVALID_VALUE is generated if level is less than 0. .P GL_INVALID_VALUE may be generated if level is greater than log sub 2 max, where max is the returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if width or height is less than 0, greater than 2~+~GL_MAX_TEXTURE_SIZE, or if width or height cannot be represented as 2**k ~+~ 2~*~border for some integer k.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_VALUE is generated if internalFormat is not one of the allowable values.

GL_INVALID_OPERATION is generated if glCopyTexImage2D is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glCopyTexSubImage1D

void glCopyTexSubImage1D(int target, int level, int xoffset, int x, int y, int width)

Description

glCopyTexSubImage1D replaces a portion of a one-dimensional texture image with pixels from the current GL_READ_BUFFER (rather than from main memory, as is the case for glTexSubImage1D).

The screen-aligned pixel row with left corner at (x,\ y), and with length width replaces the portion of the texture array with x indices xoffset through "xoffset" ~+~ "width" ~-~ 1, inclusive. The destination in the texture array may not include any texels outside the texture array as it was originally specified.

The pixels in the row are processed exactly as if glCopyPixels had been called, but the process stops just before final conversion. At this point all pixel component values are clamped to the range [0,\ 1] and then converted to the texture's internal format for storage in the texel array.

It is not an error to specify a subtexture with zero width, but such a specification has no effect. If any of the pixels within the specified row of the current GL_READ_BUFFER are outside the read window associated with the current rendering context, then the values obtained for those pixels are undefined.

No change is made to the internalformat, width, or border parameters of the specified texture array or to texel values outside the specified subregion.

Parameter target

Specifies the target texture. Must be GL_TEXTURE_1D.

Parameter level

Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap reduction image.

Parameter xoffset

Specifies the texel offset within the texture array.

Parameter x

Specify the window coordinates of the left corner of the row of pixels to be copied.

Parameter width

Specifies the width of the texture subimage.

Throws

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_1D.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous glTexImage1D or glCopyTexImage1D operation.

GL_INVALID_VALUE is generated if level is less than 0. .P GL_INVALID_VALUE may be generated if level>log sub 2 max, where max is the returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if y ~<~ ~-b or if width ~<~ ~-b, where b is the border width of the texture array.

GL_INVALID_VALUE is generated if "xoffset" ~<~ ~-b, or ("xoffset"~+~"width") ~>~ (w-b), where w is the GL_TEXTURE_WIDTH, and b is the GL_TEXTURE_BORDER of the texture image being modified. Note that w includes twice the border width.


Method glCopyTexSubImage2D

void glCopyTexSubImage2D(int target, int level, int xoffset, int yoffset, int x, int y, int width, int height)

Description

glCopyTexSubImage2D replaces a rectangular portion of a two-dimensional texture image with pixels from the current GL_READ_BUFFER (rather than from main memory, as is the case for glTexSubImage2D).

The screen-aligned pixel rectangle with lower left corner at (x,\ y) and with width width and height height replaces the portion of the texture array with x indices xoffset through xoffset~+~width~-~1, inclusive, and y indices yoffset through yoffset~+~height~-~1, inclusive, at the mipmap level specified by level.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but the process stops just before final conversion. At this point, all pixel component values are clamped to the range [0,\ 1] and then converted to the texture's internal format for storage in the texel array.

The destination rectangle in the texture array may not include any texels outside the texture array as it was originally specified. It is not an error to specify a subtexture with zero width or height, but such a specification has no effect.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the read window associated with the current rendering context, then the values obtained for those pixels are undefined.

No change is made to the internalformat, width, height, or border parameters of the specified texture array or to texel values outside the specified subregion.

Parameter target

Specifies the target texture. Must be GL_TEXTURE_2D

Parameter level

Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap reduction image.

Parameter xoffset

Specifies a texel offset in the x direction within the texture array.

Parameter yoffset

Specifies a texel offset in the y direction within the texture array.

Parameter x

Specify the window coordinates of the lower left corner of the rectangular region of pixels to be copied.

Parameter width

Specifies the width of the texture subimage.

Parameter height

Specifies the height of the texture subimage.

Throws

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous glTexImage2D or glCopyTexImage2D operation.

GL_INVALID_VALUE is generated if level is less than 0. .P GL_INVALID_VALUE may be generated if level is greater than log sub 2 max, where max is the returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if x ~<~ ~-b or if y ~<~ ~-b, where b is the border width of the texture array.

GL_INVALID_VALUE is generated if "xoffset" ~<~ -b, (xoffset~+~width)~>~(w ~-~b), yoffset~<~ ~-b, or (yoffset~+~height)~>~(h ~-~b), where w is the GL_TEXTURE_WIDTH, h is the GL_TEXTURE_HEIGHT, and b is the GL_TEXTURE_BORDER of the texture image being modified. Note that w and h include twice the border width.

GL_INVALID_OPERATION is generated if glCopyTexSubImage2D is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glCullFace

void glCullFace(int mode)

Description

glCullFace specifies whether front- or back-facing facets are culled (as specified by mode) when facet culling is enabled. Facet culling is initially disabled. To enable and disable facet culling, call the glEnable and glDisable commands with the argument GL_CULL_FACE. Facets include triangles, quadrilaterals, polygons, and rectangles.

glFrontFace specifies which of the clockwise and counterclockwise facets are front-facing and back-facing. See glFrontFace.

Parameter mode

Specifies whether front- or back-facing facets are candidates for culling. Symbolic constants GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK are accepted. The initial value is GL_BACK.

Throws

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if glCullFace is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glDeleteLists

void glDeleteLists(int list, int range)

Description

glDeleteLists causes a contiguous group of display lists to be deleted. list is the name of the first display list to be deleted, and range is the number of display lists to delete. All display lists \fId\fP with list \(<= \fId\fP \(<= list + range - 1 are deleted.

All storage locations allocated to the specified display lists are freed, and the names are available for reuse at a later time. Names within the range that do not have an associated display list are ignored. If range is 0, nothing happens.

Parameter list

Specifies the integer name of the first display list to delete.

Parameter range

Specifies the number of display lists to delete.

Throws

GL_INVALID_VALUE is generated if range is negative.

GL_INVALID_OPERATION is generated if glDeleteLists is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glDepthFunc

void glDepthFunc(int func)

Description

glDepthFunc specifies the function used to compare each incoming pixel depth value with the depth value present in the depth buffer. The comparison is performed only if depth testing is enabled. (See glEnable and glDisable of GL_DEPTH_TEST.)

func specifies the conditions under which the pixel will be drawn. The comparison functions are as follows:

GL_NEVER Never passes.
GL_LESS Passes if the incoming depth value is less than the stored depth value.
GL_EQUAL Passes if the incoming depth value is equal to the stored depth value.
GL_LEQUAL Passes if the incoming depth value is less than or equal to the stored depth value.
GL_GREATER Passes if the incoming depth value is greater than the stored depth value.
GL_NOTEQUAL Passes if the incoming depth value is not equal to the stored depth value.
GL_GEQUAL Passes if the incoming depth value is greater than or equal to the stored depth value.
GL_ALWAYS Always passes.

The initial value of func is GL_LESS. Initially, depth testing is disabled. .NOTES Even if the depth buffer exists and the depth mask is non-zero, the depth buffer is not updated if the depth test is disabled.

Parameter func

Specifies the depth comparison function. Symbolic constants GL_NEVER, GL_LESS, GL_EQUAL, GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, and GL_ALWAYS are accepted. The initial value is GL_LESS.

Throws

GL_INVALID_ENUM is generated if func is not an accepted value.

GL_INVALID_OPERATION is generated if glDepthFunc is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glDepthMask

void glDepthMask(int flag)

Description

glDepthMask specifies whether the depth buffer is enabled for writing. If flag is GL_FALSE, depth buffer writing is disabled. Otherwise, it is enabled. Initially, depth buffer writing is enabled.

Parameter flag

Specifies whether the depth buffer is enabled for writing. If flag is GL_FALSE, depth buffer writing is disabled. Otherwise, it is enabled. Initially, depth buffer writing is enabled.

Throws

GL_INVALID_OPERATION is generated if glDepthMask is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glDepthRange

void glDepthRange(float zNear, float zFar)

Description

After clipping and division by w, depth coordinates range from -1 to 1, corresponding to the near and far clipping planes. glDepthRange specifies a linear mapping of the normalized depth coordinates in this range to window depth coordinates. Regardless of the actual depth buffer implementation, window coordinate depth values are treated as though they range from 0 through 1 (like color components). Thus, the values accepted by glDepthRange are both clamped to this range before they are accepted.

The setting of (0,1) maps the near plane to 0 and the far plane to 1. With this mapping, the depth buffer range is fully utilized.

Parameter zNear

Specifies the mapping of the near clipping plane to window coordinates. The initial value is 0.

Parameter zFar

Specifies the mapping of the far clipping plane to window coordinates. The initial value is 1.

Throws

GL_INVALID_OPERATION is generated if glDepthRange is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glDisable

void glDisable(int cap)

Description

glEnable and glDisable enable and disable various capabilities. Use glIsEnabled or glGet to determine the current setting of any capability. The initial value for each capability with the exception of GL_DITHER is GL_FALSE. The initial value for GL_DITHER is GL_TRUE.

Both glEnable and glDisable take a single argument, cap, which can assume one of the following values:

GL_ALPHA_TEST If enabled, do alpha testing. See glAlphaFunc.
GL_AUTO_NORMAL If enabled, generate normal vectors when either GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4 is used to generate vertices. See glMap2.
GL_BLEND If enabled, blend the incoming RGBA color values with the values in the color buffers. See glBlendFunc.
GL_CLIP_PLANEi If enabled, clip geometry against user-defined clipping plane i. See glClipPlane.
GL_COLOR_LOGIC_OP If enabled, apply the currently selected logical operation to the incoming RGBA color and color buffer values. See glLogicOp.
GL_COLOR_MATERIAL If enabled, have one or more material parameters track the current color. See glColorMaterial.
GL_CULL_FACE If enabled, cull polygons based on their winding in window coordinates. See glCullFace.
GL_DEPTH_TEST If enabled, do depth comparisons and update the depth buffer. Note that even if the depth buffer exists and the depth mask is non-zero, the depth buffer is not updated if the depth test is disabled. See glDepthFunc and glDepthRange.
GL_DITHER If enabled, dither color components or indices before they are written to the color buffer.
GL_FOG If enabled, blend a fog color into the posttexturing color. See glFog.
GL_INDEX_LOGIC_OP If enabled, apply the currently selected logical operation to the incoming index and color buffer indices. See glLogicOp.
GL_LIGHTi If enabled, include light i in the evaluation of the lighting equation. See glLightModel and glLight.
GL_LIGHTING If enabled, use the current lighting parameters to compute the vertex color or index. Otherwise, simply associate the current color or index with each vertex. See glMaterial, glLightModel, and glLight.
GL_LINE_SMOOTH If enabled, draw lines with correct filtering. Otherwise, draw aliased lines. See glLineWidth.
GL_LINE_STIPPLE If enabled, use the current line stipple pattern when drawing lines. See glLineStipple.
GL_MAP1_COLOR_4 If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate RGBA values. See glMap1.
GL_MAP1_INDEX If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate color indices. See glMap1.
GL_MAP1_NORMAL If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate normals. See glMap1.
GL_MAP1_TEXTURE_COORD_1 If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate s texture coordinates. See glMap1.
GL_MAP1_TEXTURE_COORD_2 If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate s and t texture coordinates. See glMap1.
GL_MAP1_TEXTURE_COORD_3 If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate s, t, and r texture coordinates. See glMap1.
GL_MAP1_TEXTURE_COORD_4 If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate s, t, r, and q texture coordinates. See glMap1.
GL_MAP1_VERTEX_3 If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate x, y, and z vertex coordinates. See glMap1.
GL_MAP1_VERTEX_4 If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate homogeneous x, y, z, and w vertex coordinates. See glMap1.
GL_MAP2_COLOR_4 If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate RGBA values. See glMap2.
GL_MAP2_INDEX If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate color indices. See glMap2.
GL_MAP2_NORMAL If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate normals. See glMap2.
GL_MAP2_TEXTURE_COORD_1 If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate s texture coordinates. See glMap2.
GL_MAP2_TEXTURE_COORD_2 If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate s and t texture coordinates. See glMap2.
GL_MAP2_TEXTURE_COORD_3 If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate s, t, and r texture coordinates. See glMap2.
GL_MAP2_TEXTURE_COORD_4 If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate s, t, r, and q texture coordinates. See glMap2.
GL_MAP2_VERTEX_3 If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate x, y, and z vertex coordinates. See glMap2.
GL_MAP2_VERTEX_4 If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate homogeneous x, y, z, and w vertex coordinates. See glMap2.
GL_NORMALIZE If enabled, normal vectors specified with glNormal are scaled to unit length after transformation. See glNormal.
GL_POINT_SMOOTH If enabled, draw points with proper filtering. Otherwise, draw aliased points. See glPointSize.
GL_POLYGON_OFFSET_FILL If enabled, and if the polygon is rendered in GL_FILL mode, an offset is added to depth values of a polygon's fragments before the depth comparison is performed. See glPolygonOffset.
GL_POLYGON_OFFSET_LINE If enabled, and if the polygon is rendered in GL_LINE mode, an offset is added to depth values of a polygon's fragments before the depth comparison is performed. See glPolygonOffset.
GL_POLYGON_OFFSET_POINT If enabled, an offset is added to depth values of a polygon's fragments before the depth comparison is performed, if the polygon is rendered in GL_POINT mode. See glPolygonOffset.
GL_POLYGON_SMOOTH If enabled, draw polygons with proper filtering. Otherwise, draw aliased polygons. For correct anti-aliased polygons, an alpha buffer is needed and the polygons must be sorted front to back.
GL_POLYGON_STIPPLE If enabled, use the current polygon stipple pattern when rendering polygons. See glPolygonStipple.
GL_SCISSOR_TEST If enabled, discard fragments that are outside the scissor rectangle. See glScissor.
GL_STENCIL_TEST If enabled, do stencil testing and update the stencil buffer. See glStencilFunc and glStencilOp.
GL_TEXTURE_1D If enabled, one-dimensional texturing is performed (unless two-dimensional texturing is also enabled). See glTexImage1D.
GL_TEXTURE_2D If enabled, two-dimensional texturing is performed. See glTexImage2D.
GL_TEXTURE_GEN_Q If enabled, the q texture coordinate is computed using the texture generation function defined with glTexGen. Otherwise, the current q texture coordinate is used. See glTexGen.
GL_TEXTURE_GEN_R If enabled, the r texture coordinate is computed using the texture generation function defined with glTexGen. Otherwise, the current r texture coordinate is used. See glTexGen.
GL_TEXTURE_GEN_S If enabled, the s texture coordinate is computed using the texture generation function defined with glTexGen. Otherwise, the current s texture coordinate is used. See glTexGen.
GL_TEXTURE_GEN_T If enabled, the t texture coordinate is computed using the texture generation function defined with glTexGen. Otherwise, the current t texture coordinate is used. See glTexGen.

Parameter cap

Specifies a symbolic constant indicating a GL capability.

Parameter cap

Specifies a symbolic constant indicating a GL capability.

Throws

GL_INVALID_ENUM is generated if cap is not one of the values listed previously.

GL_INVALID_OPERATION is generated if glEnable or glDisable is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glDisableClientState

void glDisableClientState(int cap)

Description

glEnableClientState and glDisableClientState enable or disable individual client-side capabilities. By default, all client-side capabilities are disabled. Both glEnableClientState and glDisableClientState take a single argument, cap, which can assume one of the following values:

GL_COLOR_ARRAY If enabled, the color array is enabled for writing and used during rendering when glDrawArrays or glDrawElement is called. See glColorPointer.
GL_EDGE_FLAG_ARRAY If enabled, the edge flag array is enabled for writing and used during rendering when glDrawArrays or glDrawElements is called. See glEdgeFlagPointer.
GL_INDEX_ARRAY If enabled, the index array is enabled for writing and used during rendering when glDrawArrays or glDrawElements is called. See glIndexPointer.
GL_NORMAL_ARRAY If enabled, the normal array is enabled for writing and used during rendering when glDrawArrays or glDrawElements is called. See glNormalPointer.
GL_TEXTURE_COORD_ARRAY If enabled, the texture coordinate array is enabled for writing and used for rendering when glDrawArrays or glDrawElements is called. See glTexCoordPointer.
GL_VERTEX_ARRAY If enabled, the vertex array is enabled for writing and used during rendering when glDrawArrays or glDrawElements is called. See glVertexPointer.

Parameter cap

Specifies the capability to enable. Symbolic constants GL_COLOR_ARRAY, GL_EDGE_FLAG_ARRAY, GL_INDEX_ARRAY, GL_NORMAL_ARRAY, GL_TEXTURE_COORD_ARRAY, and GL_VERTEX_ARRAY are accepted.

Parameter cap

Specifies the capability to disable.

Throws

GL_INVALID_ENUM is generated if cap is not an accepted value.

glEnableClientState is not allowed between the execution of glBegin and the corresponding glEnd, but an error may or may not be generated. If no error is generated, the behavior is undefined.


Method glDrawArrays

void glDrawArrays(int mode, int first, int count)

Description

glDrawArrays specifies multiple geometric primitives with very few subroutine calls. Instead of calling a GL procedure to pass each individual vertex, normal, texture coordinate, edge flag, or color, you can prespecify separate arrays of vertexes, normals, and colors and use them to construct a sequence of primitives with a single call to glDrawArrays.

When glDrawArrays is called, it uses count sequential elements from each enabled array to construct a sequence of geometric primitives, beginning with element first. mode specifies what kind of primitives are constructed, and how the array elements construct those primitives. If GL_VERTEX_ARRAY is not enabled, no geometric primitives are generated.

Vertex attributes that are modified by glDrawArrays have an unspecified value after glDrawArrays returns. For example, if GL_COLOR_ARRAY is enabled, the value of the current color is undefined after glDrawArrays executes. Attributes that aren't modified remain well defined.

Parameter mode

Specifies what kind of primitives to render. Symbolic constants GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

Parameter first

Specifies the starting index in the enabled arrays.

Parameter count

Specifies the number of indices to be rendered.

Throws

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative.

GL_INVALID_OPERATION is generated if glDrawArrays is executed between the execution of glBegin and the corresponding glEnd.


Method glDrawBuffer

void glDrawBuffer(int mode)

Description

When colors are written to the frame buffer, they are written into the color buffers specified by glDrawBuffer. The specifications are as follows:

GL_NONE No color buffers are written.
GL_FRONT_LEFT Only the front left color buffer is written.
GL_FRONT_RIGHT Only the front right color buffer is written.
GL_BACK_LEFT Only the back left color buffer is written.
GL_BACK_RIGHT Only the back right color buffer is written.
GL_FRONT Only the front left and front right color buffers are written. If there is no front right color buffer, only the front left color buffer is written.
GL_BACK Only the back left and back right color buffers are written. If there is no back right color buffer, only the back left color buffer is written.
GL_LEFT Only the front left and back left color buffers are written. If there is no back left color buffer, only the front left color buffer is written.
GL_RIGHT Only the front right and back right color buffers are written. If there is no back right color buffer, only the front right color buffer is written.
GL_FRONT_AND_BACK All the front and back color buffers (front left, front right, back left, back right) are written. If there are no back color buffers, only the front left and front right color buffers are written. If there are no right color buffers, only the front left and back left color buffers are written. If there are no right or back color buffers, only the front left color buffer is written.
GL_AUXi Only auxiliary color buffer i is written.

If more than one color buffer is selected for drawing, then blending or logical operations are computed and applied independently for each color buffer and can produce different results in each buffer.

Monoscopic contexts include only .I left buffers, and stereoscopic contexts include both .I left and .I right buffers. Likewise, single-buffered contexts include only .I front buffers, and double-buffered contexts include both .I front and .I back buffers. The context is selected at GL initialization.

Parameter mode

Specifies up to four color buffers to be drawn into. Symbolic constants GL_NONE, GL_FRONT_LEFT, GL_FRONT_RIGHT, GL_BACK_LEFT, GL_BACK_RIGHT, GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT, GL_FRONT_AND_BACK, and GL_AUXi, where i is between 0 and ``GL_AUX_BUFFERS'' -1, are accepted (GL_AUX_BUFFERS is not the upper limit; use glGet to query the number of available aux buffers.) The initial value is GL_FRONT for single-buffered contexts, and GL_BACK for double-buffered contexts.

Throws

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if none of the buffers indicated by mode exists.

GL_INVALID_OPERATION is generated if glDrawBuffer is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glDrawPixels

void glDrawPixels(object|mapping(string:object) width, object|mapping(string:object) height, object|mapping(string:object) format, object|mapping(string:object) type, array(object|mapping(string:object)) pixels)

Description

glDrawPixels reads pixel data from memory and writes it into the frame buffer relative to the current raster position. Use glRasterPos to set the current raster position; use glGet with argument GL_CURRENT_RASTER_POSITION to query the raster position.

Several parameters define the encoding of pixel data in memory and control the processing of the pixel data before it is placed in the frame buffer. These parameters are set with four commands: glPixelStore, glPixelTransfer, glPixelMap, and glPixelZoom. This reference page describes the effects on glDrawPixels of many, but not all, of the parameters specified by these four commands.

Data is read from pixels as a sequence of signed or unsigned bytes, signed or unsigned shorts, signed or unsigned integers, or single-precision floating-point values, depending on type. Each of these bytes, shorts, integers, or floating-point values is interpreted as one color or depth component, or one index, depending on format. Indices are always treated individually. Color components are treated as groups of one, two, three, or four values, again based on format. Both individual indices and groups of components are referred to as pixels. If type is GL_BITMAP, the data must be unsigned bytes, and format must be either GL_COLOR_INDEX or GL_STENCIL_INDEX. Each unsigned byte is treated as eight 1-bit pixels, with bit ordering determined by GL_UNPACK_LSB_FIRST (see glPixelStore).

widthtimesheight pixels are read from memory, starting at location pixels. By default, these pixels are taken from adjacent memory locations, except that after all width pixels are read, the read pointer is advanced to the next four-byte boundary. The four-byte row alignment is specified by glPixelStore with argument GL_UNPACK_ALIGNMENT, and it can be set to one, two, four, or eight bytes. Other pixel store parameters specify different read pointer advancements, both before the first pixel is read and after all width pixels are read. See the

glPixelStore reference page for details on these options.

The widthtimesheight pixels that are read from memory are each operated on in the same way, based on the values of several parameters specified by glPixelTransfer and glPixelMap. The details of these operations, as well as the target buffer into which the pixels are drawn, are specific to the format of the pixels, as specified by format. format can assume one of eleven symbolic values:

GL_COLOR_INDEX Each pixel is a single value, a color index. It is converted to fixed-point format, with an unspecified number of bits to the right of the binary point, regardless of the memory data type. Floating-point values convert to true fixed-point values. Signed and unsigned integer data is converted with all fraction bits set to 0. Bitmap data convert to either 0 or 1. Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits and added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to the right. In either case, zero bits fill otherwise unspecified bit locations in the result. If the GL is in RGBA mode, the resulting index is converted to an RGBA pixel with the help of the GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A tables. If the GL is in color index mode, and if GL_MAP_COLOR is true, the index is replaced with the value that it references in lookup table GL_PIXEL_MAP_I_TO_I. Whether the lookup replacement of the index is done or not, the integer part of the index is then ANDed with 2 sup b -1, where b is the number of bits in a color index buffer. The GL then converts the resulting indices or RGBA colors to fragments by attaching the current raster position z coordinate and texture coordinates to each pixel, then assigning x and y window coordinates to the nth fragment such that .sp .RS .ce x sub n ~=~ x sub r ~+~ n ~ roman mod ~ "width" .sp .ce y sub n ~=~ y sub r ~+~ \(lf ~ n / "width" ~ \(rf .ce 0 .sp .RE where (x sub r , y sub r) is the current raster position. These pixel fragments are then treated just like the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment operations are applied before the fragments are written to the frame buffer.
GL_STENCIL_INDEX Each pixel is a single value, a stencil index. It is converted to fixed-point format, with an unspecified number of bits to the right of the binary point, regardless of the memory data type. Floating-point values convert to true fixed-point values. Signed and unsigned integer data is converted with all fraction bits set to 0. Bitmap data convert to either 0 or 1. Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits, and added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to the right. In either case, zero bits fill otherwise unspecified bit locations in the result. If GL_MAP_STENCIL is true, the index is replaced with the value that it references in lookup table GL_PIXEL_MAP_S_TO_S. Whether the lookup replacement of the index is done or not, the integer part of the index is then ANDed with 2 sup b -1, where b is the number of bits in the stencil buffer. The resulting stencil indices are then written to the stencil buffer such that the nth index is written to location

.RS .ce x sub n ~=~ x sub r ~+~ n ~ roman mod ~ "width" .sp .ce y sub n ~=~ y sub r ~+~ \(lf ~ n / "width" ~ \(rf .fi .sp .RE

where (x sub r , y sub r) is the current raster position. Only the pixel ownership test, the scissor test, and the stencil writemask affect these write operations.

GL_DEPTH_COMPONENT Each pixel is a single-depth component. Floating-point data is converted directly to an internal floating-point format with unspecified precision. Signed integer data is mapped linearly to the internal floating-point format such that the most positive representable integer value maps to 1.0, and the most negative representable value maps to -1.0. Unsigned integer data is mapped similarly: the largest integer value maps to 1.0, and 0 maps to 0.0. The resulting floating-point depth value is then multiplied by by GL_DEPTH_SCALE and added to GL_DEPTH_BIAS. The result is clamped to the range [0,1]. The GL then converts the resulting depth components to fragments by attaching the current raster position color or color index and texture coordinates to each pixel, then assigning x and y window coordinates to the nth fragment such that

.RS .ce x sub n ~=~ x sub r ~+~ n ~ roman mod ~ "width" .sp .ce y sub n ~=~ y sub r ~+~ \(lf ~ n / "width" ~ \(rf .ce 0 .sp .RE

where (x sub r , y sub r) is the current raster position. These pixel fragments are then treated just like the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment operations are applied before the fragments are written to the frame buffer.

GL_RGBA Each pixel is a four-component group: for GL_RGBA, the red component is first, followed by green, followed by blue, followed by alpha. Floating-point values are converted directly to an internal floating-point format with unspecified precision. Signed integer values are mapped linearly to the internal floating-point format such that the most positive representable integer value maps to 1.0, and the most negative representable value maps to -1.0. (Note that this mapping does not convert 0 precisely to 0.0.) Unsigned integer data is mapped similarly: the largest integer value maps to 1.0, and 0 maps to 0.0. The resulting floating-point color values are then multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN, BLUE, and ALPHA for the respective color components. The results are clamped to the range [0,1]. If GL_MAP_COLOR is true, each color component is scaled by the size of lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value that it references in that table. c is R, G, B, or A respectively. The GL then converts the resulting RGBA colors to fragments by attaching the current raster position z coordinate and texture coordinates to each pixel, then assigning x and y window coordinates to the nth fragment such that

.RS .ce x sub n ~=~ x sub r ~+~ n ~ roman mod ~ "width" .sp .ce y sub n ~=~ y sub r ~+~ \(lf ~ n / "width" ~ \(rf .ce 0 .sp .RE

where (x sub r , y sub r) is the current raster position. These pixel fragments are then treated just like the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment operations are applied before the fragments are written to the frame buffer.

GL_RED Each pixel is a single red component. This component is converted to the internal floating-point format in the same way the red component of an RGBA pixel is. It is then converted to an RGBA pixel with green and blue set to 0, and alpha set to 1. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
GL_GREEN Each pixel is a single green component. This component is converted to the internal floating-point format in the same way the green component of an RGBA pixel is. It is then converted to an RGBA pixel with red and blue set to 0, and alpha set to 1. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
GL_BLUE Each pixel is a single blue component. This component is converted to the internal floating-point format in the same way the blue component of an RGBA pixel is. It is then converted to an RGBA pixel with red and green set to 0, and alpha set to 1. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
GL_ALPHA Each pixel is a single alpha component. This component is converted to the internal floating-point format in the same way the alpha component of an RGBA pixel is. It is then converted to an RGBA pixel with red, green, and blue set to 0. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
GL_RGB Each pixel is a three-component group: red first, followed by green, followed by blue. Each component is converted to the internal floating-point format in the same way the red, green, and blue components of an RGBA pixel are. The color triple is converted to an RGBA pixel with alpha set to 1. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
GL_LUMINANCE Each pixel is a single luminance component. This component is converted to the internal floating-point format in the same way the red component of an RGBA pixel is. It is then converted to an RGBA pixel with red, green, and blue set to the converted luminance value, and alpha set to 1. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
GL_LUMINANCE_ALPHA Each pixel is a two-component group: luminance first, followed by alpha. The two components are converted to the internal floating-point format in the same way the red component of an RGBA pixel is. They are then converted to an RGBA pixel with red, green, and blue set to the converted luminance value, and alpha set to the converted alpha value. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.

The following table summarizes the meaning of the valid constants for the type parameter: .sp 2 .TS center box ; ci | ci c | c . type corresponding type = GL_UNSIGNED_BYTE unsigned 8-bit integer GL_BYTE signed 8-bit integer GL_BITMAP single bits in unsigned 8-bit integers GL_UNSIGNED_SHORT unsigned 16-bit integer GL_SHORT signed 16-bit integer GL_UNSIGNED_INT unsigned 32-bit integer GL_INT 32-bit integer GL_FLOAT single-precision floating-point .TE .sp

The rasterization described so far assumes pixel zoom factors of 1. If

glPixelZoom is used to change the x and y pixel zoom factors, pixels are converted to fragments as follows. If (x sub r, y sub r) is the current raster position, and a given pixel is in the nth column and mth row of the pixel rectangle, then fragments are generated for pixels whose centers are in the rectangle with corners at .sp .RS .ce (x sub r + zoom sub x n, y sub r + zoom sub y m) .sp .ce (x sub r + zoom sub x (n + 1), y sub r + zoom sub y ( m + 1 )) .ce 0 .sp .RE

where zoom sub x is the value of GL_ZOOM_X and zoom sub y is the value of GL_ZOOM_Y.

Parameter width

Specify the dimensions of the pixel rectangle to be written into the frame buffer.

Parameter format

Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX, GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RGBA, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_LUMINANCE, and GL_LUMINANCE_ALPHA are accepted.

Parameter type

Specifies the data type for pixels. Symbolic constants GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and GL_FLOAT are accepted.

Parameter pixels

Specifies a pointer to the pixel data.

Throws

GL_INVALID_VALUE is generated if either width or height is negative.

GL_INVALID_ENUM is generated if format or type is not one of the accepted values.

GL_INVALID_OPERATION is generated if format is GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA, and the GL is in color index mode.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not either GL_COLOR_INDEX or GL_STENCIL_INDEX.

GL_INVALID_OPERATION is generated if format is GL_STENCIL_INDEX and there is no stencil buffer.

GL_INVALID_OPERATION is generated if glDrawPixels is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glEdgeFlag

void glEdgeFlag(int flag)

Description

Each vertex of a polygon, separate triangle, or separate quadrilateral specified between a glBegin/glEnd pair is marked as the start of either a boundary or nonboundary edge. If the current edge flag is true when the vertex is specified, the vertex is marked as the start of a boundary edge. Otherwise, the vertex is marked as the start of a nonboundary edge. glEdgeFlag sets the edge flag bit to GL_TRUE if flag is GL_TRUE, and to GL_FALSE otherwise.

The vertices of connected triangles and connected quadrilaterals are always marked as boundary, regardless of the value of the edge flag.

Boundary and nonboundary edge flags on vertices are significant only if GL_POLYGON_MODE is set to GL_POINT or GL_LINE. See glPolygonMode.

Parameter flag

Specifies the current edge flag value, either GL_TRUE or GL_FALSE. The initial value is GL_TRUE.

Parameter flag

Specifies a pointer to an array that contains a single boolean element, which replaces the current edge flag value.


Method glEnable

void glEnable(int cap)

Description

glEnable and glDisable enable and disable various capabilities. Use glIsEnabled or glGet to determine the current setting of any capability. The initial value for each capability with the exception of GL_DITHER is GL_FALSE. The initial value for GL_DITHER is GL_TRUE.

Both glEnable and glDisable take a single argument, cap, which can assume one of the following values:

GL_ALPHA_TEST If enabled, do alpha testing. See glAlphaFunc.
GL_AUTO_NORMAL If enabled, generate normal vectors when either GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4 is used to generate vertices. See glMap2.
GL_BLEND If enabled, blend the incoming RGBA color values with the values in the color buffers. See glBlendFunc.
GL_CLIP_PLANEi If enabled, clip geometry against user-defined clipping plane i. See glClipPlane.
GL_COLOR_LOGIC_OP If enabled, apply the currently selected logical operation to the incoming RGBA color and color buffer values. See glLogicOp.
GL_COLOR_MATERIAL If enabled, have one or more material parameters track the current color. See glColorMaterial.
GL_CULL_FACE If enabled, cull polygons based on their winding in window coordinates. See glCullFace.
GL_DEPTH_TEST If enabled, do depth comparisons and update the depth buffer. Note that even if the depth buffer exists and the depth mask is non-zero, the depth buffer is not updated if the depth test is disabled. See glDepthFunc and glDepthRange.
GL_DITHER If enabled, dither color components or indices before they are written to the color buffer.
GL_FOG If enabled, blend a fog color into the posttexturing color. See glFog.
GL_INDEX_LOGIC_OP If enabled, apply the currently selected logical operation to the incoming index and color buffer indices. See glLogicOp.
GL_LIGHTi If enabled, include light i in the evaluation of the lighting equation. See glLightModel and glLight.
GL_LIGHTING If enabled, use the current lighting parameters to compute the vertex color or index. Otherwise, simply associate the current color or index with each vertex. See glMaterial, glLightModel, and glLight.
GL_LINE_SMOOTH If enabled, draw lines with correct filtering. Otherwise, draw aliased lines. See glLineWidth.
GL_LINE_STIPPLE If enabled, use the current line stipple pattern when drawing lines. See glLineStipple.
GL_MAP1_COLOR_4 If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate RGBA values. See glMap1.
GL_MAP1_INDEX If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate color indices. See glMap1.
GL_MAP1_NORMAL If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate normals. See glMap1.
GL_MAP1_TEXTURE_COORD_1 If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate s texture coordinates. See glMap1.
GL_MAP1_TEXTURE_COORD_2 If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate s and t texture coordinates. See glMap1.
GL_MAP1_TEXTURE_COORD_3 If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate s, t, and r texture coordinates. See glMap1.
GL_MAP1_TEXTURE_COORD_4 If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate s, t, r, and q texture coordinates. See glMap1.
GL_MAP1_VERTEX_3 If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate x, y, and z vertex coordinates. See glMap1.
GL_MAP1_VERTEX_4 If enabled, calls to glEvalCoord, glEvalMesh1, and glEvalPoint generate homogeneous x, y, z, and w vertex coordinates. See glMap1.
GL_MAP2_COLOR_4 If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate RGBA values. See glMap2.
GL_MAP2_INDEX If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate color indices. See glMap2.
GL_MAP2_NORMAL If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate normals. See glMap2.
GL_MAP2_TEXTURE_COORD_1 If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate s texture coordinates. See glMap2.
GL_MAP2_TEXTURE_COORD_2 If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate s and t texture coordinates. See glMap2.
GL_MAP2_TEXTURE_COORD_3 If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate s, t, and r texture coordinates. See glMap2.
GL_MAP2_TEXTURE_COORD_4 If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate s, t, r, and q texture coordinates. See glMap2.
GL_MAP2_VERTEX_3 If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate x, y, and z vertex coordinates. See glMap2.
GL_MAP2_VERTEX_4 If enabled, calls to glEvalCoord, glEvalMesh2, and glEvalPoint generate homogeneous x, y, z, and w vertex coordinates. See glMap2.
GL_NORMALIZE If enabled, normal vectors specified with glNormal are scaled to unit length after transformation. See glNormal.
GL_POINT_SMOOTH If enabled, draw points with proper filtering. Otherwise, draw aliased points. See glPointSize.
GL_POLYGON_OFFSET_FILL If enabled, and if the polygon is rendered in GL_FILL mode, an offset is added to depth values of a polygon's fragments before the depth comparison is performed. See glPolygonOffset.
GL_POLYGON_OFFSET_LINE If enabled, and if the polygon is rendered in GL_LINE mode, an offset is added to depth values of a polygon's fragments before the depth comparison is performed. See glPolygonOffset.
GL_POLYGON_OFFSET_POINT If enabled, an offset is added to depth values of a polygon's fragments before the depth comparison is performed, if the polygon is rendered in GL_POINT mode. See glPolygonOffset.
GL_POLYGON_SMOOTH If enabled, draw polygons with proper filtering. Otherwise, draw aliased polygons. For correct anti-aliased polygons, an alpha buffer is needed and the polygons must be sorted front to back.
GL_POLYGON_STIPPLE If enabled, use the current polygon stipple pattern when rendering polygons. See glPolygonStipple.
GL_SCISSOR_TEST If enabled, discard fragments that are outside the scissor rectangle. See glScissor.
GL_STENCIL_TEST If enabled, do stencil testing and update the stencil buffer. See glStencilFunc and glStencilOp.
GL_TEXTURE_1D If enabled, one-dimensional texturing is performed (unless two-dimensional texturing is also enabled). See glTexImage1D.
GL_TEXTURE_2D If enabled, two-dimensional texturing is performed. See glTexImage2D.
GL_TEXTURE_GEN_Q If enabled, the q texture coordinate is computed using the texture generation function defined with glTexGen. Otherwise, the current q texture coordinate is used. See glTexGen.
GL_TEXTURE_GEN_R If enabled, the r texture coordinate is computed using the texture generation function defined with glTexGen. Otherwise, the current r texture coordinate is used. See glTexGen.
GL_TEXTURE_GEN_S If enabled, the s texture coordinate is computed using the texture generation function defined with glTexGen. Otherwise, the current s texture coordinate is used. See glTexGen.
GL_TEXTURE_GEN_T If enabled, the t texture coordinate is computed using the texture generation function defined with glTexGen. Otherwise, the current t texture coordinate is used. See glTexGen.

Parameter cap

Specifies a symbolic constant indicating a GL capability.

Parameter cap

Specifies a symbolic constant indicating a GL capability.

Throws

GL_INVALID_ENUM is generated if cap is not one of the values listed previously.

GL_INVALID_OPERATION is generated if glEnable or glDisable is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glEnableClientState

void glEnableClientState(int cap)

Description

glEnableClientState and glDisableClientState enable or disable individual client-side capabilities. By default, all client-side capabilities are disabled. Both glEnableClientState and glDisableClientState take a single argument, cap, which can assume one of the following values:

GL_COLOR_ARRAY If enabled, the color array is enabled for writing and used during rendering when glDrawArrays or glDrawElement is called. See glColorPointer.
GL_EDGE_FLAG_ARRAY If enabled, the edge flag array is enabled for writing and used during rendering when glDrawArrays or glDrawElements is called. See glEdgeFlagPointer.
GL_INDEX_ARRAY If enabled, the index array is enabled for writing and used during rendering when glDrawArrays or glDrawElements is called. See glIndexPointer.
GL_NORMAL_ARRAY If enabled, the normal array is enabled for writing and used during rendering when glDrawArrays or glDrawElements is called. See glNormalPointer.
GL_TEXTURE_COORD_ARRAY If enabled, the texture coordinate array is enabled for writing and used for rendering when glDrawArrays or glDrawElements is called. See glTexCoordPointer.
GL_VERTEX_ARRAY If enabled, the vertex array is enabled for writing and used during rendering when glDrawArrays or glDrawElements is called. See glVertexPointer.

Parameter cap

Specifies the capability to enable. Symbolic constants GL_COLOR_ARRAY, GL_EDGE_FLAG_ARRAY, GL_INDEX_ARRAY, GL_NORMAL_ARRAY, GL_TEXTURE_COORD_ARRAY, and GL_VERTEX_ARRAY are accepted.

Parameter cap

Specifies the capability to disable.

Throws

GL_INVALID_ENUM is generated if cap is not an accepted value.

glEnableClientState is not allowed between the execution of glBegin and the corresponding glEnd, but an error may or may not be generated. If no error is generated, the behavior is undefined.


Method glEnd

void glEnd()

Description

glBegin and glEnd delimit the vertices that define a primitive or a group of like primitives. glBegin accepts a single argument that specifies in which of ten ways the vertices are interpreted. Taking n as an integer count starting at one, and N as the total number of vertices specified, the interpretations are as follows:

GL_POINTS Treats each vertex as a single point. Vertex n defines point n. N points are drawn.
GL_LINES Treats each pair of vertices as an independent line segment. Vertices 2n-1 and 2n define line n. N/2 lines are drawn.
GL_LINE_STRIP Draws a connected group of line segments from the first vertex to the last. Vertices n and n+1 define line n. N-1 lines are drawn.
GL_LINE_LOOP Draws a connected group of line segments from the first vertex to the last, then back to the first. Vertices n and n+1 define line n. The last line, however, is defined by vertices N and 1. N lines are drawn.
GL_TRIANGLES Treats each triplet of vertices as an independent triangle. Vertices 3n-2, 3n-1, and 3n define triangle n. N/3 triangles are drawn.
GL_TRIANGLE_STRIP Draws a connected group of triangles. One triangle is defined for each vertex presented after the first two vertices. For odd n, vertices n, n+1, and n+2 define triangle n. For even n, vertices n+1, n, and n+2 define triangle n. N-2 triangles are drawn.
GL_TRIANGLE_FAN Draws a connected group of triangles. One triangle is defined for each vertex presented after the first two vertices. Vertices 1, n+1, and n+2 define triangle n. N-2 triangles are drawn.
GL_QUADS Treats each group of four vertices as an independent quadrilateral. Vertices 4n-3, 4n-2, 4n-1, and 4n define quadrilateral n. N/4 quadrilaterals are drawn.
GL_QUAD_STRIP Draws a connected group of quadrilaterals. One quadrilateral is defined for each pair of vertices presented after the first pair. Vertices 2n-1, 2n, 2n+2, and 2n+1 define quadrilateral n. N/2-1 quadrilaterals are drawn. Note that the order in which vertices are used to construct a quadrilateral from strip data is different from that used with independent data.
GL_POLYGON Draws a single, convex polygon. Vertices 1 through N define this polygon.

Only a subset of GL commands can be used between glBegin and glEnd. The commands are glVertex, glColor, glIndex, glNormal, glTexCoord, glEvalCoord, glEvalPoint, glArrayElement, glMaterial, and glEdgeFlag. Also, it is acceptable to use glCallList or glCallLists to execute display lists that include only the preceding commands. If any other GL command is executed between glBegin and glEnd, the error flag is set and the command is ignored.

Regardless of the value chosen for mode, there is no limit to the number of vertices that can be defined between glBegin and glEnd. Lines, triangles, quadrilaterals, and polygons that are incompletely specified are not drawn. Incomplete specification results when either too few vertices are provided to specify even a single primitive or when an incorrect multiple of vertices is specified. The incomplete primitive is ignored; the rest are drawn.

The minimum specification of vertices for each primitive is as follows: 1 for a point, 2 for a line, 3 for a triangle, 4 for a quadrilateral, and 3 for a polygon. Modes that require a certain multiple of vertices are GL_LINES (2), GL_TRIANGLES (3), GL_QUADS (4), and GL_QUAD_STRIP (2).

Parameter mode

Specifies the primitive or primitives that will be created from vertices presented between glBegin and the subsequent glEnd. Ten symbolic constants are accepted: GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUADS, GL_QUAD_STRIP, and GL_POLYGON.

Throws

GL_INVALID_ENUM is generated if mode is set to an unaccepted value.

GL_INVALID_OPERATION is generated if glBegin is executed between a glBegin and the corresponding execution of glEnd.

GL_INVALID_OPERATION is generated if glEnd is executed without being preceded by a glBegin.

GL_INVALID_OPERATION is generated if a command other than glVertex, glColor, glIndex, glNormal, glTexCoord, glEvalCoord, glEvalPoint, glArrayElement, glMaterial, glEdgeFlag, glCallList, or glCallLists is executed between the execution of glBegin and the corresponding execution glEnd.

Execution of glEnableClientState, glDisableClientState, glEdgeFlagPointer, glTexCoordPointer, glColorPointer, glIndexPointer, glNormalPointer,

glVertexPointer, glInterleavedArrays, or glPixelStore is not allowed after a call to glBegin and before the corresponding call to glEnd, but an error may or may not be generated.


Method glEndList

void glEndList()

Description

Display lists are groups of GL commands that have been stored for subsequent execution. Display lists are created with glNewList. All subsequent commands are placed in the display list, in the order issued, until glEndList is called.

glNewList has two arguments. The first argument, list, is a positive integer that becomes the unique name for the display list. Names can be created and reserved with glGenLists and tested for uniqueness with glIsList. The second argument, mode, is a symbolic constant that can assume one of two values:

GL_COMPILE Commands are merely compiled.
GL_COMPILE_AND_EXECUTE Commands are executed as they are compiled into the display list.

Certain commands are not compiled into the display list but are executed immediately, regardless of the display-list mode. These commands are glColorPointer, glDeleteLists, glDisableClientState, glEdgeFlagPointer, glEnableClientState, glFeedbackBuffer, glFinish, glFlush, glGenLists, glIndexPointer, glInterleavedArrays, glIsEnabled, glIsList, glNormalPointer, glPopClientAttrib, glPixelStore, glPushClientAttrib, glReadPixels, glRenderMode, glSelectBuffer, glTexCoordPointer, glVertexPointer, and all of the glGet commands.

Similarly, glTexImage2D and glTexImage1D are executed immediately and not compiled into the display list when their first argument is GL_PROXY_TEXTURE_2D or GL_PROXY_TEXTURE_1D, respectively.

When glEndList is encountered, the display-list definition is completed by associating the list with the unique name list (specified in the glNewList command). If a display list with name list already exists, it is replaced only when glEndList is called.

Parameter list

Specifies the display-list name.

Parameter mode

Specifies the compilation mode, which can be GL_COMPILE or GL_COMPILE_AND_EXECUTE.

Throws

GL_INVALID_VALUE is generated if list is 0.

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if glEndList is called without a preceding glNewList, or if glNewList is called while a display list is being defined.

GL_INVALID_OPERATION is generated if glNewList or glEndList is executed between the execution of glBegin and the corresponding execution of glEnd.

GL_OUT_OF_MEMORY is generated if there is insufficient memory to compile the display list. If the GL version is 1.1 or greater, no change is made to the previous contents of the display list, if any, and no other change is made to the GL state. (It is as if no attempt had been made to create the new display list.)


Method glEvalCoord

void glEvalCoord(float|int|array(float|int) u, float|int|void v)

Description

glEvalCoord evaluates enabled one-dimensional maps at argument u or two-dimensional maps using two domain values, u and v. To define a map, call glMap1 and glMap2; to enable and disable it, call glEnable and glDisable.

When one of the glEvalCoord commands is issued, all currently enabled maps of the indicated dimension are evaluated. Then, for each enabled map, it is as if the corresponding GL command had been issued with the computed value. That is, if GL_MAP1_INDEX or GL_MAP2_INDEX is enabled, a glIndex command is simulated. If GL_MAP1_COLOR_4 or GL_MAP2_COLOR_4 is enabled, a glColor command is simulated. If GL_MAP1_NORMAL or GL_MAP2_NORMAL is enabled, a normal vector is produced, and if any of GL_MAP1_TEXTURE_COORD_1, GL_MAP1_TEXTURE_COORD_2, GL_MAP1_TEXTURE_COORD_3, GL_MAP1_TEXTURE_COORD_4, GL_MAP2_TEXTURE_COORD_1, GL_MAP2_TEXTURE_COORD_2, GL_MAP2_TEXTURE_COORD_3, or GL_MAP2_TEXTURE_COORD_4 is enabled, then an appropriate glTexCoord command is simulated.

For color, color index, normal, and texture coordinates the GL uses evaluated values instead of current values for those evaluations that are enabled, and current values otherwise, However, the evaluated values do not update the current values. Thus, if glVertex commands are interspersed with glEvalCoord commands, the color, normal, and texture coordinates associated with the glVertex commands are not affected by the values generated by the glEvalCoord commands, but only by the most recent glColor, glIndex, glNormal, and glTexCoord commands.

No commands are issued for maps that are not enabled. If more than one texture evaluation is enabled for a particular dimension (for example, GL_MAP2_TEXTURE_COORD_1 and GL_MAP2_TEXTURE_COORD_2), then only the evaluation of the map that produces the larger number of coordinates (in this case, GL_MAP2_TEXTURE_COORD_2) is carried out. GL_MAP1_VERTEX_4 overrides GL_MAP1_VERTEX_3, and GL_MAP2_VERTEX_4 overrides GL_MAP2_VERTEX_3, in the same manner. If neither a three- nor a four-component vertex map is enabled for the specified dimension, the glEvalCoord command is ignored.

If you have enabled automatic normal generation, by calling glEnable with argument GL_AUTO_NORMAL, glEvalCoord generates surface normals analytically, regardless of the contents or enabling of the GL_MAP2_NORMAL map. Let .sp .nf Pp Pp m = -- X -- Pu Pv .sp .fi

Then the generated normal n is

n = m over ~ over { || m || }

.sp

If automatic normal generation is disabled, the corresponding normal map GL_MAP2_NORMAL, if enabled, is used to produce a normal. If neither automatic normal generation nor a normal map is enabled, no normal is generated for glEvalCoord commands.

Parameter u

Specifies a value that is the domain coordinate u to the basis function defined in a previous glMap1 or glMap2 command.

Parameter v

Specifies a value that is the domain coordinate v to the basis function defined in a previous glMap2 command.

Parameter u

Specifies a pointer to an array containing either one or two domain coordinates. The first coordinate is u. The second coordinate is v.


Method glEvalPoint

void glEvalPoint(int|array(int) i, int|void j)

Description

glMapGrid and glEvalMesh are used in tandem to efficiently generate and evaluate a series of evenly spaced map domain values. glEvalPoint can be used to evaluate a single grid point in the same gridspace that is traversed by glEvalMesh. Calling glEvalPoint is equivalent to calling .nf

glEvalCoord1(i . DELTA u + u ); 1 where

DELTA u = (u - u ) / n 2 1

and n, u , and u 1 2

.fi are the arguments to the most recent glMapGrid1 command. The one absolute numeric requirement is that if i~=~n, then the value computed from .nf i . DELTA u + u is exactly u . 1 2

.fi

In the two-dimensional case, glEvalPoint, let .nf DELTA u = (u - u )/n 2 1

DELTA v = (v - v )/m 2 1

where n, u , u , m, v , and v 1 2 1 2

.fi are the arguments to the most recent glMapGrid2 command. Then the glEvalPoint command is equivalent to calling .nf

glEvalCoord2(i . DELTA u + u , j . DELTA v + v ); 1 1

.fi The only absolute numeric requirements are that if i~=~n, then the value computed from .nf

i . DELTA u + u is exactly u , 1 2 .fi and if j~=~m, then the value computed from .nf

j cdot DELTA v + v is exactly v . 1 2

Parameter i

Specifies the integer value for grid domain variable i.

Parameter j

Specifies the integer value for grid domain variable j (glEvalPoint only).


Method glFinish

void glFinish()

Description

glFinish does not return until the effects of all previously called GL commands are complete. Such effects include all changes to GL state, all changes to connection state, and all changes to the frame buffer contents.

Throws

GL_INVALID_OPERATION is generated if glFinish is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glFlush

void glFlush()

Description

Different GL implementations buffer commands in several different locations, including network buffers and the graphics accelerator itself. glFlush empties all of these buffers, causing all issued commands to be executed as quickly as they are accepted by the actual rendering engine. Though this execution may not be completed in any particular time period, it does complete in finite time.

Because any GL program might be executed over a network, or on an accelerator that buffers commands, all programs should call glFlush whenever they count on having all of their previously issued commands completed. For example, call glFlush before waiting for user input that depends on the generated image.

Throws

GL_INVALID_OPERATION is generated if glFlush is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glFog

void glFog(int pname, float|int|array(float|int) param)

Description

Fog is initially disabled. While enabled, fog affects rasterized geometry, bitmaps, and pixel blocks, but not buffer clear operations. To enable and disable fog, call glEnable and glDisable with argument GL_FOG.

glFog assigns the value or values in params to the fog parameter specified by pname. The following values are accepted for pname:

GL_FOG_MODE params is a single integer or floating-point value that specifies the equation to be used to compute the fog blend factor, f. Three symbolic constants are accepted: GL_LINEAR, GL_EXP, and GL_EXP2. The equations corresponding to these symbolic constants are defined below. The initial fog mode is GL_EXP.
GL_FOG_DENSITY params is a single integer or floating-point value that specifies density, the fog density used in both exponential fog equations. Only nonnegative densities are accepted. The initial fog density is 1.
GL_FOG_START params is a single integer or floating-point value that specifies start, the near distance used in the linear fog equation. The initial near distance is 0.
GL_FOG_END params is a single integer or floating-point value that specifies end, the far distance used in the linear fog equation. The initial far distance is 1.
GL_FOG_INDEX params is a single integer or floating-point value that specifies i sub f, the fog color index. The initial fog index is 0.
GL_FOG_COLOR params contains four integer or floating-point values that specify C sub f, the fog color. Integer values are mapped linearly such that the most positive representable value maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are mapped directly. After conversion, all color components are clamped to the range [0,1]. The initial fog color is (0, 0, 0, 0).

Fog blends a fog color with each rasterized pixel fragment's posttexturing color using a blending factor f. Factor f is computed in one of three ways, depending on the fog mode. Let z be the distance in eye coordinates from the origin to the fragment being fogged. The equation for GL_LINEAR fog is .ce

.EQ f ~=~ {end ~-~ z} over {end ~-~ start} .EN

.RE

The equation for GL_EXP fog is .ce

.EQ f ~=~ e ** (-(density ~cdot~ z)) .EN

The equation for GL_EXP2 fog is .ce

.EQ f ~=~ e ** (-(density ~cdot~ z) ** 2) .EN

Regardless of the fog mode, f is clamped to the range [0,1] after it is computed. Then, if the GL is in RGBA color mode, the fragment's color C sub r is replaced by .sp .ce .EQ {C sub r} prime ~=~ f C sub r + (1 - f) C sub f .EN

In color index mode, the fragment's color index i sub r is replaced by .sp .ce .EQ {i sub r} prime ~=~ i sub r + (1 - f) i sub f .EN

Parameter pname

Specifies a single-valued fog parameter. GL_FOG_MODE, GL_FOG_DENSITY, GL_FOG_START, GL_FOG_END, and GL_FOG_INDEX are accepted.

Parameter param

Specifies the value that pname will be set to.

Parameter pname

Specifies a fog parameter. GL_FOG_MODE, GL_FOG_DENSITY, GL_FOG_START, GL_FOG_END, GL_FOG_INDEX, and GL_FOG_COLOR are accepted.

Parameter params

Specifies the value or values to be assigned to pname. GL_FOG_COLOR requires an array of four values. All other parameters accept an array containing only a single value.

Throws

GL_INVALID_ENUM is generated if pname is not an accepted value, or if pname is GL_FOG_MODE and params is not an accepted value.

GL_INVALID_VALUE is generated if pname is GL_FOG_DENSITY, and params is negative.

GL_INVALID_OPERATION is generated if glFog is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glFrontFace

void glFrontFace(int mode)

Description

In a scene composed entirely of opaque closed surfaces, back-facing polygons are never visible. Eliminating these invisible polygons has the obvious benefit of speeding up the rendering of the image. To enable and disable elimination of back-facing polygons, call glEnable and glDisable with argument GL_CULL_FACE.

The projection of a polygon to window coordinates is said to have clockwise winding if an imaginary object following the path from its first vertex, its second vertex, and so on, to its last vertex, and finally back to its first vertex, moves in a clockwise direction about the interior of the polygon. The polygon's winding is said to be counterclockwise if the imaginary object following the same path moves in a counterclockwise direction about the interior of the polygon. glFrontFace specifies whether polygons with clockwise winding in window coordinates, or counterclockwise winding in window coordinates, are taken to be front-facing. Passing GL_CCW to mode selects counterclockwise polygons as front-facing; GL_CW selects clockwise polygons as front-facing. By default, counterclockwise polygons are taken to be front-facing.

Parameter mode

Specifies the orientation of front-facing polygons. GL_CW and GL_CCW are accepted. The initial value is GL_CCW.

Throws

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if glFrontFace is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glFrustum

void glFrustum(float left, float right, float bottom, float top, float zNear, float zFar)

Description

glFrustum describes a perspective matrix that produces a perspective projection. The current matrix (see glMatrixMode) is multiplied by this matrix and the result replaces the current matrix, as if glMultMatrix were called with the following matrix as its argument:

.sp 5 .ce .EQ down 130 {left ( ~~ matrix { ccol { {{2 ~ "zNear"} over {"right" - "left"}} above 0 above 0 above 0 } ccol { 0 above {{2 ~ "zNear"} over {"top" - "bottom"}} ~ above 0 above 0 } ccol { A ~~~~ above B ~~~~ above C ~~~~ above -1 ~~~~} ccol { 0 above 0 above D above 0} } ~~~ right )} .EN .sp .ce .EQ down 130 {A ~=~ {"right" + "left"} over {"right" - "left"}} .EN .sp .ce .EQ down 130 {B ~=~ {"top" + "bottom"} over {"top" - "bottom"}} .EN .sp .ce .EQ down 130 {C ~=~ -{{"zFar" + "zNear"} over {"zFar" - "zNear"}}} .EN .sp .ce .EQ down 130 {D ~=~ -{{2 ~ "zFar" ~ "zNear"} over {"zFar" - "zNear"}}} .EN .sp

Typically, the matrix mode is GL_PROJECTION, and (left, bottom, -zNear) and (right, top, -zNear) specify the points on the near clipping plane that are mapped to the lower left and upper right corners of the window, assuming that the eye is located at (0, 0, 0). -zFar specifies the location of the far clipping plane. Both zNear and zFar must be positive.

Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

Parameter left

Specify the coordinates for the left and right vertical clipping planes.

Parameter bottom

Specify the coordinates for the bottom and top horizontal clipping planes.

Parameter zNear

Specify the distances to the near and far depth clipping planes. Both distances must be positive.

Throws

GL_INVALID_VALUE is generated if zNear or zFar is not positive.

GL_INVALID_OPERATION is generated if glFrustum is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glGenLists

int glGenLists(int range)

Description

glGenLists has one argument, range. It returns an integer n such that range contiguous empty display lists, named n, n+1, ..., n+range -1, are created. If range is 0, if there is no group of range contiguous names available, or if any error is generated, no display lists are generated, and 0 is returned.

Parameter range

Specifies the number of contiguous empty display lists to be generated.

Throws

GL_INVALID_VALUE is generated if range is negative.

GL_INVALID_OPERATION is generated if glGenLists is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glGetError

int glGetError()

Description

glGetError returns the value of the error flag. Each detectable error is assigned a numeric code and symbolic name. When an error occurs, the error flag is set to the appropriate error code value. No other errors are recorded until glGetError is called, the error code is returned, and the flag is reset to GL_NO_ERROR. If a call to glGetError returns GL_NO_ERROR, there has been no detectable error since the last call to glGetError, or since the GL was initialized.

To allow for distributed implementations, there may be several error flags. If any single error flag has recorded an error, the value of that flag is returned and that flag is reset to GL_NO_ERROR when glGetError is called. If more than one flag has recorded an error, glGetError returns and clears an arbitrary error flag value. Thus, glGetError should always be called in a loop, until it returns GL_NO_ERROR, if all error flags are to be reset.

Initially, all error flags are set to GL_NO_ERROR.

The following errors are currently defined:

GL_NO_ERROR No error has been recorded. The value of this symbolic constant is guaranteed to be 0.
GL_INVALID_ENUM An unacceptable value is specified for an enumerated argument. The offending command is ignored, and has no other side effect than to set the error flag.
GL_INVALID_VALUE A numeric argument is out of range. The offending command is ignored, and has no other side effect than to set the error flag.
GL_INVALID_OPERATION The specified operation is not allowed in the current state. The offending command is ignored, and has no other side effect than to set the error flag.
GL_STACK_OVERFLOW This command would cause a stack overflow. The offending command is ignored, and has no other side effect than to set the error flag.
GL_STACK_UNDERFLOW This command would cause a stack underflow. The offending command is ignored, and has no other side effect than to set the error flag.
GL_OUT_OF_MEMORY There is not enough memory left to execute the command. The state of the GL is undefined, except for the state of the error flags, after this error is recorded.

When an error flag is set, results of a GL operation are undefined only if GL_OUT_OF_MEMORY has occurred. In all other cases, the command generating the error is ignored and has no effect on the GL state or frame buffer contents. If the generating command returns a value, it returns 0. If glGetError itself generates an error, it returns 0.

Throws

GL_INVALID_OPERATION is generated if glGetError is executed between the execution of glBegin and the corresponding execution of glEnd. In this case glGetError returns 0.


Method glGetString

string glGetString(int name)

Description

glGetString returns a pointer to a static string describing some aspect of the current GL connection. name can be one of the following:

GL_VENDOR Returns the company responsible for this GL implementation. This name does not change from release to release.
GL_RENDERER Returns the name of the renderer. This name is typically specific to a particular configuration of a hardware platform. It does not change from release to release.
GL_VERSION Returns a version or release number.
GL_EXTENSIONS Returns a space-separated list of supported extensions to GL.

Because the GL does not include queries for the performance characteristics of an implementation, some applications are written to recognize known platforms and modify their GL usage based on known performance characteristics of these platforms. Strings GL_VENDOR and GL_RENDERER together uniquely specify a platform. They do not change from release to release and should be used by platform-recognition algorithms.

Some applications want to make use of features that are not part of the standard GL. These features may be implemented as extensions to the standard GL. The GL_EXTENSIONS string is a space-separated list of supported GL extensions. (Extension names never contain a space character.)

The GL_VERSION string begins with a version number. The version number uses one of these forms:

major_number.minor_number

major_number.minor_number.release_number

Vendor-specific information may follow the version number. Its format depends on the implementation, but a space always separates the version number and the vendor-specific information.

All strings are null-terminated.

Parameter name

Specifies a symbolic constant, one of GL_VENDOR, GL_RENDERER, GL_VERSION, or GL_EXTENSIONS.

Throws

GL_INVALID_ENUM is generated if name is not an accepted value.

GL_INVALID_OPERATION is generated if glGetString is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glHint

void glHint(int target, int mode)

Description

Certain aspects of GL behavior, when there is room for interpretation, can be controlled with hints. A hint is specified with two arguments. target is a symbolic constant indicating the behavior to be controlled, and mode is another symbolic constant indicating the desired behavior. The initial value for each target is GL_DONT_CARE. mode can be one of the following:

GL_FASTEST The most efficient option should be chosen.
GL_NICEST The most correct, or highest quality, option should be chosen.
GL_DONT_CARE No preference.

Though the implementation aspects that can be hinted are well defined, the interpretation of the hints depends on the implementation. The hint aspects that can be specified with target, along with suggested semantics, are as follows:

GL_FOG_HINT Indicates the accuracy of fog calculation. If per-pixel fog calculation is not efficiently supported by the GL implementation, hinting GL_DONT_CARE or GL_FASTEST can result in per-vertex calculation of fog effects.
GL_LINE_SMOOTH_HINT Indicates the sampling quality of antialiased lines. If a larger filter function is applied, hinting GL_NICEST can result in more pixel fragments being generated during rasterization,
GL_PERSPECTIVE_CORRECTION_HINT Indicates the quality of color and texture coordinate interpolation. If perspective-corrected parameter interpolation is not efficiently supported by the GL implementation, hinting GL_DONT_CARE or GL_FASTEST can result in simple linear interpolation of colors and/or texture coordinates.
GL_POINT_SMOOTH_HINT Indicates the sampling quality of antialiased points. If a larger filter function is applied, hinting GL_NICEST can result in more pixel fragments being generated during rasterization,
GL_POLYGON_SMOOTH_HINT Indicates the sampling quality of antialiased polygons. Hinting GL_NICEST can result in more pixel fragments being generated during rasterization, if a larger filter function is applied.

Parameter target

Specifies a symbolic constant indicating the behavior to be controlled. GL_FOG_HINT, GL_LINE_SMOOTH_HINT, GL_PERSPECTIVE_CORRECTION_HINT, GL_POINT_SMOOTH_HINT, and GL_POLYGON_SMOOTH_HINT are accepted.

Parameter mode

Specifies a symbolic constant indicating the desired behavior. GL_FASTEST, GL_NICEST, and GL_DONT_CARE are accepted.

Throws

GL_INVALID_ENUM is generated if either target or mode is not an accepted value.

GL_INVALID_OPERATION is generated if glHint is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glIndex

void glIndex(float|int c)

Description

glIndex updates the current (single-valued) color index. It takes one argument, the new value for the current color index.

The current index is stored as a floating-point value. Integer values are converted directly to floating-point values, with no special mapping. The initial value is 1.

Index values outside the representable range of the color index buffer are not clamped. However, before an index is dithered (if enabled) and written to the frame buffer, it is converted to fixed-point format. Any bits in the integer portion of the resulting fixed-point value that do not correspond to bits in the frame buffer are masked out.

Parameter c

Specifies the new value for the current color index.

Parameter c

Specifies a pointer to a one-element array that contains the new value for the current color index.


Method glIndexMask

void glIndexMask(int mask)

Description

glIndexMask controls the writing of individual bits in the color index buffers. The least significant n bits of mask, where n is the number of bits in a color index buffer, specify a mask. Where a 1 (one) appears in the mask, it's possible to write to the corresponding bit in the color index buffer (or buffers). Where a 0 (zero) appears, the corresponding bit is write-protected.

This mask is used only in color index mode, and it affects only the buffers currently selected for writing (see glDrawBuffer). Initially, all bits are enabled for writing.

Parameter mask

Specifies a bit mask to enable and disable the writing of individual bits in the color index buffers. Initially, the mask is all 1's.

Throws

GL_INVALID_OPERATION is generated if glIndexMask is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glInitNames

void glInitNames()

Description

The name stack is used during selection mode to allow sets of rendering commands to be uniquely identified. It consists of an ordered set of unsigned integers. glInitNames causes the name stack to be initialized to its default empty state.

The name stack is always empty while the render mode is not GL_SELECT. Calls to glInitNames while the render mode is not GL_SELECT are ignored.

Throws

GL_INVALID_OPERATION is generated if glInitNames is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glIsEnabled

int glIsEnabled(int cap)

Description

glIsEnabled returns GL_TRUE if cap is an enabled capability and returns GL_FALSE otherwise. Initially all capabilities except GL_DITHER are disabled; GL_DITHER is initially enabled.

The following capabilities are accepted for cap:

.TS lb lb l l l. Constant See _

GL_ALPHA_TEST glAlphaFunc GL_AUTO_NORMAL glEvalCoord GL_BLEND glBlendFunc, glLogicOp GL_CLIP_PLANEi glClipPlane GL_COLOR_ARRAY glColorPointer GL_COLOR_LOGIC_OP glLogicOp GL_COLOR_MATERIAL glColorMaterial GL_CULL_FACE glCullFace GL_DEPTH_TEST glDepthFunc, glDepthRange GL_DITHER glEnable GL_EDGE_FLAG_ARRAY glEdgeFlagPointer GL_FOG glFog GL_INDEX_ARRAY glIndexPointer GL_INDEX_LOGIC_OP glLogicOp GL_LIGHTi glLightModel, glLight GL_LIGHTING glMaterial, glLightModel, glLight GL_LINE_SMOOTH glLineWidth GL_LINE_STIPPLE glLineStipple GL_MAP1_COLOR_4 glMap1, glMap2 GL_MAP2_TEXTURE_COORD_2 glMap2 GL_MAP2_TEXTURE_COORD_3 glMap2 GL_MAP2_TEXTURE_COORD_4 glMap2 GL_MAP2_VERTEX_3 glMap2 GL_MAP2_VERTEX_4 glMap2 GL_NORMAL_ARRAY glNormalPointer GL_NORMALIZE glNormal GL_POINT_SMOOTH glPointSize GL_POLYGON_SMOOTH glPolygonMode GL_POLYGON_OFFSET_FILL glPolygonOffset GL_POLYGON_OFFSET_LINE glPolygonOffset GL_POLYGON_OFFSET_POINT glPolygonOffset GL_POLYGON_STIPPLE glPolygonStipple GL_SCISSOR_TEST glScissor GL_STENCIL_TEST glStencilFunc, glStencilOp GL_TEXTURE_1D glTexImage1D GL_TEXTURE_2D glTexImage2D GL_TEXTURE_COORD_ARRAY glTexCoordPointer GL_TEXTURE_GEN_Q glTexGen GL_TEXTURE_GEN_R glTexGen GL_TEXTURE_GEN_S glTexGen GL_TEXTURE_GEN_T glTexGen GL_VERTEX_ARRAY glVertexPointer .TE

Parameter cap

Specifies a symbolic constant indicating a GL capability.

Throws

GL_INVALID_ENUM is generated if cap is not an accepted value.

GL_INVALID_OPERATION is generated if glIsEnabled is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glIsList

int glIsList(int list)

Description

glIsList returns GL_TRUE if list is the name of a display list and returns GL_FALSE otherwise.

Parameter list

Specifies a potential display-list name.

Throws

GL_INVALID_OPERATION is generated if glIsList is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glIsTexture

int glIsTexture(int texture)

Description

glIsTexture returns GL_TRUE if texture is currently the name of a texture. If texture is zero, or is a non-zero value that is not currently the name of a texture, or if an error occurs, glIsTexture returns GL_FALSE.

Parameter texture

Specifies a value that may be the name of a texture.

Throws

GL_INVALID_OPERATION is generated if glIsTexture is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glLight

void glLight(int light, int pname, float|int|array(float|int) param)

Description

glLight sets the values of individual light source parameters. light names the light and is a symbolic name of the form GL_LIGHTi, where 0 \(<= i < GL_MAX_LIGHTS. pname specifies one of ten light source parameters, again by symbolic name. params is either a single value or a pointer to an array that contains the new values.

To enable and disable lighting calculation, call glEnable and glDisable with argument GL_LIGHTING. Lighting is initially disabled. When it is enabled, light sources that are enabled contribute to the lighting calculation. Light source i is enabled and disabled using glEnable and glDisable with argument GL_LIGHTi.

The ten light parameters are as follows:

GL_AMBIENT params contains four integer or floating-point values that specify the ambient RGBA intensity of the light. Integer values are mapped linearly such that the most positive representable value maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are mapped directly. Neither integer nor floating-point values are clamped. The initial ambient light intensity is (0, 0, 0, 1).
GL_DIFFUSE params contains four integer or floating-point values that specify the diffuse RGBA intensity of the light. Integer values are mapped linearly such that the most positive representable value maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are mapped directly. Neither integer nor floating-point values are clamped. The initial value for GL_LIGHT0 is (1, 1, 1, 1); for other lights, the initial value is (0, 0, 0, 0).
GL_SPECULAR params contains four integer or floating-point values that specify the specular RGBA intensity of the light. Integer values are mapped linearly such that the most positive representable value maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are mapped directly. Neither integer nor floating-point values are clamped. The initial value for GL_LIGHT0 is (1, 1, 1, 1); for other lights, the initial value is (0, 0, 0, 0).
GL_POSITION params contains four integer or floating-point values that specify the position of the light in homogeneous object coordinates. Both integer and floating-point values are mapped directly. Neither integer nor floating-point values are clamped. The position is transformed by the modelview matrix when glLight is called (just as if it were a point), and it is stored in eye coordinates. If the w component of the position is 0, the light is treated as a directional source. Diffuse and specular lighting calculations take the light's direction, but not its actual position, into account, and attenuation is disabled. Otherwise, diffuse and specular lighting calculations are based on the actual location of the light in eye coordinates, and attenuation is enabled. The initial position is (0, 0, 1, 0); thus, the initial light source is directional, parallel to, and in the direction of the -z axis.
GL_SPOT_DIRECTION params contains three integer or floating-point values that specify the direction of the light in homogeneous object coordinates. Both integer and floating-point values are mapped directly. Neither integer nor floating-point values are clamped. The spot direction is transformed by the inverse of the modelview matrix when glLight is called (just as if it were a normal), and it is stored in eye coordinates. It is significant only when GL_SPOT_CUTOFF is not 180, which it is initially. The initial direction is (0, 0, -1).
GL_SPOT_EXPONENT params is a single integer or floating-point value that specifies the intensity distribution of the light. Integer and floating-point values are mapped directly. Only values in the range [0,128] are accepted. Effective light intensity is attenuated by the cosine of the angle between the direction of the light and the direction from the light to the vertex being lighted, raised to the power of the spot exponent. Thus, higher spot exponents result in a more focused light source, regardless of the spot cutoff angle (see GL_SPOT_CUTOFF, next paragraph). The initial spot exponent is 0, resulting in uniform light distribution.
GL_SPOT_CUTOFF params is a single integer or floating-point value that specifies the maximum spread angle of a light source. Integer and floating-point values are mapped directly. Only values in the range [0,90] and the special value 180 are accepted. If the angle between the direction of the light and the direction from the light to the vertex being lighted is greater than the spot cutoff angle, the light is completely masked. Otherwise, its intensity is controlled by the spot exponent and the attenuation factors. The initial spot cutoff is 180, resulting in uniform light distribution.
GL_CONSTANT_ATTENUATION
GL_LINEAR_ATTENUATION
GL_QUADRATIC_ATTENUATION params is a single integer or floating-point value that specifies one of the three light attenuation factors. Integer and floating-point values are mapped directly. Only nonnegative values are accepted. If the light is positional, rather than directional, its intensity is attenuated by the reciprocal of the sum of the constant factor, the linear factor times the distance between the light and the vertex being lighted, and the quadratic factor times the square of the same distance. The initial attenuation factors are (1, 0, 0), resulting in no attenuation.

Parameter light

Specifies a light. The number of lights depends on the implementation, but at least eight lights are supported. They are identified by symbolic names of the form GL_LIGHTi where 0 \(<= i < GL_MAX_LIGHTS.

Parameter pname

Specifies a single-valued light source parameter for light. GL_SPOT_EXPONENT, GL_SPOT_CUTOFF, GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, and GL_QUADRATIC_ATTENUATION are accepted.

Parameter param

Specifies the value that parameter pname of light source light will be set to.

Parameter light

Specifies a light. The number of lights depends on the implementation, but at least eight lights are supported. They are identified by symbolic names of the form GL_LIGHTi where 0 \(<= i < GL_MAX_LIGHTS.

Parameter pname

Specifies a light source parameter for light. GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION, GL_SPOT_CUTOFF, GL_SPOT_DIRECTION, GL_SPOT_EXPONENT, GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, and GL_QUADRATIC_ATTENUATION are accepted.

Parameter params

Specifies a pointer to the value or values that parameter pname of light source light will be set to.

Throws

GL_INVALID_ENUM is generated if either light or pname is not an accepted value.

GL_INVALID_VALUE is generated if a spot exponent value is specified outside the range [0,128], or if spot cutoff is specified outside the range [0,90] (except for the special value 180), or if a negative attenuation factor is specified.

GL_INVALID_OPERATION is generated if glLight is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glLightModel

void glLightModel(int pname, float|int|array(float|int) param)

Description

glLightModel sets the lighting model parameter. pname names a parameter and params gives the new value. There are three lighting model parameters:

GL_LIGHT_MODEL_AMBIENT params contains four integer or floating-point values that specify the ambient RGBA intensity of the entire scene. Integer values are mapped linearly such that the most positive representable value maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are mapped directly. Neither integer nor floating-point values are clamped. The initial ambient scene intensity is (0.2, 0.2, 0.2, 1.0).
GL_LIGHT_MODEL_LOCAL_VIEWER params is a single integer or floating-point value that specifies how specular reflection angles are computed. If params is 0 (or 0.0), specular reflection angles take the view direction to be parallel to and in the direction of the -z axis, regardless of the location of the vertex in eye coordinates. Otherwise, specular reflections are computed from the origin of the eye coordinate system. The initial value is 0.
GL_LIGHT_MODEL_TWO_SIDE params is a single integer or floating-point value that specifies whether one- or two-sided lighting calculations are done for polygons. It has no effect on the lighting calculations for points, lines, or bitmaps. If params is 0 (or 0.0), one-sided lighting is specified, and only the front material parameters are used in the lighting equation. Otherwise, two-sided lighting is specified. In this case, vertices of back-facing polygons are lighted using the back material parameters, and have their normals reversed before the lighting equation is evaluated. Vertices of front-facing polygons are always lighted using the front material parameters, with no change to their normals. The initial value is 0.

In RGBA mode, the lighted color of a vertex is the sum of the material emission intensity, the product of the material ambient reflectance and the lighting model full-scene ambient intensity, and the contribution of each enabled light source. Each light source contributes the sum of three terms: ambient, diffuse, and specular. The ambient light source contribution is the product of the material ambient reflectance and the light's ambient intensity. The diffuse light source contribution is the product of the material diffuse reflectance, the light's diffuse intensity, and the dot product of the vertex's normal with the normalized vector from the vertex to the light source. The specular light source contribution is the product of the material specular reflectance, the light's specular intensity, and the dot product of the normalized vertex-to-eye and vertex-to-light vectors, raised to the power of the shininess of the material. All three light source contributions are attenuated equally based on the distance from the vertex to the light source and on light source direction, spread exponent, and spread cutoff angle. All dot products are replaced with 0 if they evaluate to a negative value.

The alpha component of the resulting lighted color is set to the alpha value of the material diffuse reflectance.

In color index mode, the value of the lighted index of a vertex ranges from the ambient to the specular values passed to glMaterial using GL_COLOR_INDEXES. Diffuse and specular coefficients, computed with a (.30, .59, .11) weighting of the lights' colors, the shininess of the material, and the same reflection and attenuation equations as in the RGBA case, determine how much above ambient the resulting index is.

Parameter pname

Specifies a single-valued lighting model parameter. GL_LIGHT_MODEL_LOCAL_VIEWER and GL_LIGHT_MODEL_TWO_SIDE are accepted.

Parameter param

Specifies the value that param will be set to.

Parameter pname

Specifies a lighting model parameter. GL_LIGHT_MODEL_AMBIENT, GL_LIGHT_MODEL_LOCAL_VIEWER, and GL_LIGHT_MODEL_TWO_SIDE are accepted.

Parameter params

Specifies a pointer to the value or values that params will be set to.

Throws

GL_INVALID_ENUM is generated if pname is not an accepted value.

GL_INVALID_OPERATION is generated if glLightModel is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glLineStipple

void glLineStipple(int factor, int pattern)

Description

Line stippling masks out certain fragments produced by rasterization; those fragments will not be drawn. The masking is achieved by using three parameters: the 16-bit line stipple pattern pattern, the repeat count factor, and an integer stipple counter s.

Counter s is reset to 0 whenever glBegin is called, and before each line segment of a glBegin(GL_LINES)/glEnd sequence is generated. It is incremented after each fragment of a unit width aliased line segment is generated, or after each i fragments of an i width line segment are generated. The i fragments associated with count s are masked out if .sp .ce pattern bit (s ~/~ "factor") ~roman mod~ 16 .sp is 0, otherwise these fragments are sent to the frame buffer. Bit zero of pattern is the least significant bit.

Antialiased lines are treated as a sequence of 1 times width rectangles for purposes of stippling. Whether rectagle s is rasterized or not depends on the fragment rule described for aliased lines, counting rectangles rather than groups of fragments.

To enable and disable line stippling, call glEnable and glDisable with argument GL_LINE_STIPPLE. When enabled, the line stipple pattern is applied as described above. When disabled, it is as if the pattern were all 1's. Initially, line stippling is disabled.

Parameter factor

Specifies a multiplier for each bit in the line stipple pattern. If factor is 3, for example, each bit in the pattern is used three times before the next bit in the pattern is used. factor is clamped to the range [1, 256] and defaults to 1.

Parameter pattern

Specifies a 16-bit integer whose bit pattern determines which fragments of a line will be drawn when the line is rasterized. Bit zero is used first; the default pattern is all 1's.

Throws

GL_INVALID_OPERATION is generated if glLineStipple is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glLineWidth

void glLineWidth(float width)

Description

glLineWidth specifies the rasterized width of both aliased and antialiased lines. Using a line width other than 1 has different effects, depending on whether line antialiasing is enabled. To enable and disable line antialiasing, call glEnable and glDisable with argument GL_LINE_SMOOTH. Line antialiasing is initially disabled.

If line antialiasing is disabled, the actual width is determined by rounding the supplied width to the nearest integer. (If the rounding results in the value 0, it is as if the line width were 1.) If .nf | DELTA x | >= | DELTA y |, .fi i pixels are filled in each column that is rasterized, where i is the rounded value of width. Otherwise, i pixels are filled in each row that is rasterized.

If antialiasing is enabled, line rasterization produces a fragment for each pixel square that intersects the region lying within the rectangle having width equal to the current line width, length equal to the actual length of the line, and centered on the mathematical line segment. The coverage value for each fragment is the window coordinate area of the intersection of the rectangular region with the corresponding pixel square. This value is saved and used in the final rasterization step.

Not all widths can be supported when line antialiasing is enabled. If an unsupported width is requested, the nearest supported width is used. Only width 1 is guaranteed to be supported; others depend on the implementation. To query the range of supported widths and the size difference between supported widths within the range, call glGet with arguments GL_LINE_WIDTH_RANGE and GL_LINE_WIDTH_GRANULARITY.

Parameter width

Specifies the width of rasterized lines. The initial value is 1.

Throws

GL_INVALID_VALUE is generated if width is less than or equal to 0.

GL_INVALID_OPERATION is generated if glLineWidth is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glListBase

void glListBase(int base)

Description

glCallLists specifies an array of offsets. Display-list names are generated by adding base to each offset. Names that reference valid display lists are executed; the others are ignored.

Parameter base

Specifies an integer offset that will be added to glCallLists offsets to generate display-list names. The initial value is 0.

Throws

GL_INVALID_OPERATION is generated if glListBase is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glLoadIdentity

void glLoadIdentity()

Description

glLoadIdentity replaces the current matrix with the identity matrix. It is semantically equivalent to calling glLoadMatrix with the identity matrix

.ce

.EQ left ( down 20 { ~ matrix { ccol { 1 above 0 above 0 above 0~ } ccol { 0 above 1 above 0 above 0~ } ccol { 0 above 0 above 1 above 0~ } ccol { 0 above 0 above 0 above 1 } } } ~~ right ) .EN

but in some cases it is more efficient.

Throws

GL_INVALID_OPERATION is generated if glLoadIdentity is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glLoadMatrix

void glLoadMatrix(array(array(float|int)) m)

Description

glLoadMatrix replaces the current matrix with the one whose elements are specified by m. The current matrix is the projection matrix, modelview matrix, or texture matrix, depending on the current matrix mode (see glMatrixMode).

The current matrix, M, defines a transformation of coordinates. For instance, assume M refers to the modelview matrix. If v ~=~ (v[0], v[1], v[2], v[3]) is the set of object coordinates of a vertex, and m points to an array of 16 single- or double-precision floating-point values m[0], m[1],. . .,m[15], then the modelview transformation M(v) does the following:

.ce .EQ down 130 {M(v) ~ = ~ {{ left ( matrix { ccol { ~m[0] above m[1] above m[2] above m[3] ~} ccol { ~m[4] above m[5] above m[6] above m[7] ~} ccol { ~m[8] above m[9] above m[10] above m[11] ~} ccol { ~m[12]~ above m[13]~ above m[14]~ above m[15]~} } right ) } ~~ times ~~ {left ( matrix { ccol { ~v[0]~ above ~v[1]~ above ~v[2]~ above ~v[3]~ } } right )} }} .EN

.sp

Where 'times' denotes matrix multiplication.

Projection and texture transformations are similarly defined.

Parameter m

Specifies a pointer to 16 consecutive values, which are used as the elements of a 4 times 4 column-major matrix.

Throws

GL_INVALID_OPERATION is generated if glLoadMatrix is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glLoadName

void glLoadName(int name)

Description

The name stack is used during selection mode to allow sets of rendering commands to be uniquely identified. It consists of an ordered set of unsigned integers. glLoadName causes name to replace the value on the top of the name stack, which is initially empty.

The name stack is always empty while the render mode is not GL_SELECT. Calls to glLoadName while the render mode is not GL_SELECT are ignored.

Parameter name

Specifies a name that will replace the top value on the name stack.

Throws

GL_INVALID_OPERATION is generated if glLoadName is called while the name stack is empty.

GL_INVALID_OPERATION is generated if glLoadName is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glLogicOp

void glLogicOp(int opcode)

Description

glLogicOp specifies a logical operation that, when enabled, is applied between the incoming color index or RGBA color and the color index or RGBA color at the corresponding location in the frame buffer. To enable or disable the logical operation, call glEnable and glDisable using the symbolic constant GL_COLOR_LOGIC_OP for RGBA mode or GL_INDEX_LOGIC_OP for color index mode. The initial value is disabled for both operations.

.ne .TS center box ; ci | ci c | c . opcode resulting value = GL_CLEAR 0 GL_SET 1 GL_COPY s GL_COPY_INVERTED ~s GL_NOOP d GL_INVERT ~d GL_AND s & d GL_NAND ~(s & d) GL_OR s | d GL_NOR ~(s | d) GL_XOR s ^ d GL_EQUIV ~(s ^ d) GL_AND_REVERSE s & ~d GL_AND_INVERTED ~s & d GL_OR_REVERSE s | ~d GL_OR_INVERTED ~s | d .TE

opcode is a symbolic constant chosen from the list above. In the explanation of the logical operations, s represents the incoming color index and d represents the index in the frame buffer. Standard C-language operators are used. As these bitwise operators suggest, the logical operation is applied independently to each bit pair of the source and destination indices or colors.

Parameter opcode

Specifies a symbolic constant that selects a logical operation. The following symbols are accepted: GL_CLEAR, GL_SET, GL_COPY, GL_COPY_INVERTED, GL_NOOP, GL_INVERT, GL_AND, GL_NAND, GL_OR, GL_NOR, GL_XOR, GL_EQUIV, GL_AND_REVERSE, GL_AND_INVERTED, GL_OR_REVERSE, and GL_OR_INVERTED. The initial value is GL_COPY.

Throws

GL_INVALID_ENUM is generated if opcode is not an accepted value.

GL_INVALID_OPERATION is generated if glLogicOp is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glMaterial

void glMaterial(int face, int pname, float|int|array(float|int) param)

Description

glMaterial assigns values to material parameters. There are two matched sets of material parameters. One, the front-facing set, is used to shade points, lines, bitmaps, and all polygons (when two-sided lighting is disabled), or just front-facing polygons (when two-sided lighting is enabled). The other set, back-facing, is used to shade back-facing polygons only when two-sided lighting is enabled. Refer to the glLightModel reference page for details concerning one- and two-sided lighting calculations.

glMaterial takes three arguments. The first, face, specifies whether the GL_FRONT materials, the GL_BACK materials, or both GL_FRONT_AND_BACK materials will be modified. The second, pname, specifies which of several parameters in one or both sets will be modified. The third, params, specifies what value or values will be assigned to the specified parameter.

Material parameters are used in the lighting equation that is optionally applied to each vertex. The equation is discussed in the glLightModel reference page. The parameters that can be specified using glMaterial, and their interpretations by the lighting equation, are as follows:

GL_AMBIENT params contains four integer or floating-point values that specify the ambient RGBA reflectance of the material. Integer values are mapped linearly such that the most positive representable value maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are mapped directly. Neither integer nor floating-point values are clamped. The initial ambient reflectance for both front- and back-facing materials is (0.2, 0.2, 0.2, 1.0).
GL_DIFFUSE params contains four integer or floating-point values that specify the diffuse RGBA reflectance of the material. Integer values are mapped linearly such that the most positive representable value maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are mapped directly. Neither integer nor floating-point values are clamped. The initial diffuse reflectance for both front- and back-facing materials is (0.8, 0.8, 0.8, 1.0).
GL_SPECULAR params contains four integer or floating-point values that specify the specular RGBA reflectance of the material. Integer values are mapped linearly such that the most positive representable value maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are mapped directly. Neither integer nor floating-point values are clamped. The initial specular reflectance for both front- and back-facing materials is (0, 0, 0, 1).
GL_EMISSION params contains four integer or floating-point values that specify the RGBA emitted light intensity of the material. Integer values are mapped linearly such that the most positive representable value maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are mapped directly. Neither integer nor floating-point values are clamped. The initial emission intensity for both front- and back-facing materials is (0, 0, 0, 1).
GL_SHININESS params is a single integer or floating-point value that specifies the RGBA specular exponent of the material. Integer and floating-point values are mapped directly. Only values in the range [0,128] are accepted. The initial specular exponent for both front- and back-facing materials is 0.
GL_AMBIENT_AND_DIFFUSE Equivalent to calling glMaterial twice with the same parameter values, once with GL_AMBIENT and once with GL_DIFFUSE.
GL_COLOR_INDEXES params contains three integer or floating-point values specifying the color indices for ambient, diffuse, and specular lighting. These three values, and GL_SHININESS, are the only material values used by the color index mode lighting equation. Refer to the glLightModel reference page for a discussion of color index lighting.

Parameter face

Specifies which face or faces are being updated. Must be one of GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK.

Parameter pname

Specifies the single-valued material parameter of the face or faces that is being updated. Must be GL_SHININESS.

Parameter param

Specifies the value that parameter GL_SHININESS will be set to.

Parameter face

Specifies which face or faces are being updated. Must be one of GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK.

Parameter pname

Specifies the material parameter of the face or faces that is being updated. Must be one of GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_EMISSION, GL_SHININESS, GL_AMBIENT_AND_DIFFUSE, or GL_COLOR_INDEXES.

Parameter params

Specifies a pointer to the value or values that pname will be set to.

Throws

GL_INVALID_ENUM is generated if either face or pname is not an accepted value.

GL_INVALID_VALUE is generated if a specular exponent outside the range [0,128] is specified.


Method glMatrixMode

void glMatrixMode(int mode)

Description

glMatrixMode sets the current matrix mode. mode can assume one of three values:

GL_MODELVIEW Applies subsequent matrix operations to the modelview matrix stack.
GL_PROJECTION Applies subsequent matrix operations to the projection matrix stack.
GL_TEXTURE Applies subsequent matrix operations to the texture matrix stack.

To find out which matrix stack is currently the target of all matrix operations, call glGet with argument GL_MATRIX_MODE. The initial value is GL_MODELVIEW.

Parameter mode

Specifies which matrix stack is the target for subsequent matrix operations. Three values are accepted: GL_MODELVIEW, GL_PROJECTION, and GL_TEXTURE. The initial value is GL_MODELVIEW.

Throws

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if glMatrixMode is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glMultMatrix

void glMultMatrix(array(array(float|int)) m)

Description

glMultMatrix multiplies the current matrix with the one specified using m, and replaces the current matrix with the product.

The current matrix is determined by the current matrix mode (see glMatrixMode). It is either the projection matrix, modelview matrix, or the texture matrix.

Parameter m

Points to 16 consecutive values that are used as the elements of a 4 times 4 column-major matrix.

Throws

GL_INVALID_OPERATION is generated if glMultMatrix is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glNewList

void glNewList(int list, int mode)

Description

Display lists are groups of GL commands that have been stored for subsequent execution. Display lists are created with glNewList. All subsequent commands are placed in the display list, in the order issued, until glEndList is called.

glNewList has two arguments. The first argument, list, is a positive integer that becomes the unique name for the display list. Names can be created and reserved with glGenLists and tested for uniqueness with glIsList. The second argument, mode, is a symbolic constant that can assume one of two values:

GL_COMPILE Commands are merely compiled.
GL_COMPILE_AND_EXECUTE Commands are executed as they are compiled into the display list.

Certain commands are not compiled into the display list but are executed immediately, regardless of the display-list mode. These commands are glColorPointer, glDeleteLists, glDisableClientState, glEdgeFlagPointer, glEnableClientState, glFeedbackBuffer, glFinish, glFlush, glGenLists, glIndexPointer, glInterleavedArrays, glIsEnabled, glIsList, glNormalPointer, glPopClientAttrib, glPixelStore, glPushClientAttrib, glReadPixels, glRenderMode, glSelectBuffer, glTexCoordPointer, glVertexPointer, and all of the glGet commands.

Similarly, glTexImage2D and glTexImage1D are executed immediately and not compiled into the display list when their first argument is GL_PROXY_TEXTURE_2D or GL_PROXY_TEXTURE_1D, respectively.

When glEndList is encountered, the display-list definition is completed by associating the list with the unique name list (specified in the glNewList command). If a display list with name list already exists, it is replaced only when glEndList is called.

Parameter list

Specifies the display-list name.

Parameter mode

Specifies the compilation mode, which can be GL_COMPILE or GL_COMPILE_AND_EXECUTE.

Throws

GL_INVALID_VALUE is generated if list is 0.

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if glEndList is called without a preceding glNewList, or if glNewList is called while a display list is being defined.

GL_INVALID_OPERATION is generated if glNewList or glEndList is executed between the execution of glBegin and the corresponding execution of glEnd.

GL_OUT_OF_MEMORY is generated if there is insufficient memory to compile the display list. If the GL version is 1.1 or greater, no change is made to the previous contents of the display list, if any, and no other change is made to the GL state. (It is as if no attempt had been made to create the new display list.)


Method glNormal

void glNormal(float|int|array(float|int) nx, float|int|void ny, float|int|void nz)

Description

The current normal is set to the given coordinates whenever glNormal is issued. Byte, short, or integer arguments are converted to floating-point format with a linear mapping that maps the most positive representable integer value to 1.0, and the most negative representable integer value to -1.0.

Normals specified with glNormal need not have unit length. If normalization is enabled, then normals specified with glNormal are normalized after transformation. To enable and disable normalization, call glEnable and glDisable with the argument GL_NORMALIZE. Normalization is initially disabled.

Parameter nx

Specify the x, y, and z coordinates of the new current normal. The initial value of the current normal is the unit vector, (0, 0, 1).

Parameter v

Specifies a pointer to an array of three elements: the x, y, and z coordinates of the new current normal.


Method glOrtho

void glOrtho(float left, float right, float bottom, float top, float zNear, float zFar)

Description

glOrtho describes a transformation that produces a parallel projection. The current matrix (see glMatrixMode) is multiplied by this matrix and the result replaces the current matrix, as if glMultMatrix were called with the following matrix as its argument: .sp .ce .EQ left ( matrix { ccol { {2 over {"right" - "left"}} above 0 above 0 above 0 } ccol { 0 above {2 over {"top" - "bottom"}} above 0 above 0 } ccol { 0 above 0 above {-2 over {"zFar" - "zNear"}} above 0 } ccol { {t sub x}~ above {t sub y}~ above {t sub z}~ above 1~ } } right ) .EN

where .ce .EQ t sub x ~=~ -{{"right" + "left"} over {"right" - "left"}} .EN

.ce .EQ t sub y ~=~ -{{"top" + "bottom"} over {"top" - "bottom"}} .EN

.ce .EQ t sub z ~=~ -{{"zFar" + "zNear"} over {"zFar" - "zNear"}} .EN

.RE

Typically, the matrix mode is GL_PROJECTION, and (left, bottom, -zNear) and (right, top, -zNear) specify the points on the near clipping plane that are mapped to the lower left and upper right corners of the window, respectively, assuming that the eye is located at (0, 0, 0). -zFar specifies the location of the far clipping plane. Both zNear and zFar can be either positive or negative.

Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

Parameter left

Specify the coordinates for the left and right vertical clipping planes.

Parameter bottom

Specify the coordinates for the bottom and top horizontal clipping planes.

Parameter zNear

Specify the distances to the nearer and farther depth clipping planes. These values are negative if the plane is to be behind the viewer.

Throws

GL_INVALID_OPERATION is generated if glOrtho is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glPassThrough

void glPassThrough(float token)

Description

Feedback is a GL render mode. The mode is selected by calling glRenderMode with GL_FEEDBACK. When the GL is in feedback mode, no pixels are produced by rasterization. Instead, information about primitives that would have been rasterized is fed back to the application using the GL. See the glFeedbackBuffer reference page for a description of the feedback buffer and the values in it.

glPassThrough inserts a user-defined marker in the feedback buffer when it is executed in feedback mode. token is returned as if it were a primitive; it is indicated with its own unique identifying value: GL_PASS_THROUGH_TOKEN. The order of glPassThrough commands with respect to the specification of graphics primitives is maintained.

Parameter token

Specifies a marker value to be placed in the feedback buffer following a GL_PASS_THROUGH_TOKEN.

Throws

GL_INVALID_OPERATION is generated if glPassThrough is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glPixelZoom

void glPixelZoom(float xfactor, float yfactor)

Description

glPixelZoom specifies values for the x and y zoom factors. During the execution of glDrawPixels or glCopyPixels, if (xr , yr ) is the current raster position, and a given element is in the mth row and nth column of the pixel rectangle, then pixels whose centers are in the rectangle with corners at .sp .ce (xr ~+~ n cdot "xfactor", yr ~+~ m cdot "yfactor") .sp .ce (xr ~+~ (n+1) cdot "xfactor", yr ~+~ (m+1) cdot "yfactor") .sp are candidates for replacement. Any pixel whose center lies on the bottom or left edge of this rectangular region is also modified.

Pixel zoom factors are not limited to positive values. Negative zoom factors reflect the resulting image about the current raster position.

Parameter xfactor

Specify the x and y zoom factors for pixel write operations.

Throws

GL_INVALID_OPERATION is generated if glPixelZoom is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glPointSize

void glPointSize(float size)

Description

glPointSize specifies the rasterized diameter of both aliased and antialiased points. Using a point size other than 1 has different effects, depending on whether point antialiasing is enabled. To enable and disable point antialiasing, call glEnable and glDisable with argument GL_POINT_SMOOTH. Point antialiasing is initially disabled.

If point antialiasing is disabled, the actual size is determined by rounding the supplied size to the nearest integer. (If the rounding results in the value 0, it is as if the point size were 1.) If the rounded size is odd, then the center point ( x , y ) of the pixel fragment that represents the point is computed as .sp .ce ( \(lf ~ x sub w ~ \(rf ~+~ .5 , \(lf ~ y sub w ~ \(rf ~+~ .5 ) .sp where w subscripts indicate window coordinates. All pixels that lie within the square grid of the rounded size centered at ( x , y ) make up the fragment. If the size is even, the center point is .sp .ce ( \(lf ~ x sub w ~+~ .5 ~ \(rf, \(lf ~ y sub w ~+~ .5 ~ \(rf ) .sp and the rasterized fragment's centers are the half-integer window coordinates within the square of the rounded size centered at ( x , y ). All pixel fragments produced in rasterizing a nonantialiased point are assigned the same associated data, that of the vertex corresponding to the point.

If antialiasing is enabled, then point rasterization produces a fragment for each pixel square that intersects the region lying within the circle having diameter equal to the current point size and centered at the point's ( x sub w , y sub w ). The coverage value for each fragment is the window coordinate area of the intersection of the circular region with the corresponding pixel square. This value is saved and used in the final rasterization step. The data associated with each fragment is the data associated with the point being rasterized.

Not all sizes are supported when point antialiasing is enabled. If an unsupported size is requested, the nearest supported size is used. Only size 1 is guaranteed to be supported; others depend on the implementation. To query the range of supported sizes and the size difference between supported sizes within the range, call glGet with arguments GL_POINT_SIZE_RANGE and GL_POINT_SIZE_GRANULARITY.

Parameter size

Specifies the diameter of rasterized points. The initial value is 1.

Throws

GL_INVALID_VALUE is generated if size is less than or equal to 0.

GL_INVALID_OPERATION is generated if glPointSize is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glPolygonMode

void glPolygonMode(int face, int mode)

Description

glPolygonMode controls the interpretation of polygons for rasterization. face describes which polygons mode applies to: front-facing polygons (GL_FRONT), back-facing polygons (GL_BACK), or both (GL_FRONT_AND_BACK). The polygon mode affects only the final rasterization of polygons. In particular, a polygon's vertices are lit and the polygon is clipped and possibly culled before these modes are applied.

Three modes are defined and can be specified in mode:

GL_POINT Polygon vertices that are marked as the start of a boundary edge are drawn as points. Point attributes such as GL_POINT_SIZE and GL_POINT_SMOOTH control the rasterization of the points. Polygon rasterization attributes other than GL_POLYGON_MODE have no effect.
GL_LINE Boundary edges of the polygon are drawn as line segments. They are treated as connected line segments for line stippling; the line stipple counter and pattern are not reset between segments (see glLineStipple). Line attributes such as GL_LINE_WIDTH and GL_LINE_SMOOTH control the rasterization of the lines. Polygon rasterization attributes other than GL_POLYGON_MODE have no effect.
GL_FILL The interior of the polygon is filled. Polygon attributes such as GL_POLYGON_STIPPLE and GL_POLYGON_SMOOTH control the rasterization of the polygon.

Parameter face

Specifies the polygons that mode applies to. Must be GL_FRONT for front-facing polygons, GL_BACK for back-facing polygons, or GL_FRONT_AND_BACK for front- and back-facing polygons.

Parameter mode

Specifies how polygons will be rasterized. Accepted values are GL_POINT, GL_LINE, and GL_FILL. The initial value is GL_FILL for both front- and back-facing polygons.

Throws

GL_INVALID_ENUM is generated if either face or mode is not an accepted value.

GL_INVALID_OPERATION is generated if glPolygonMode is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glPolygonOffset

void glPolygonOffset(float factor, float units)

Description

When GL_POLYGON_OFFSET is enabled, each fragment's depth value will be offset after it is interpolated from the depth values of the appropriate vertices. The value of the offset is "factor" ~*~ DZ ~~+~~ r ~*~ "units", where DZ~ is a measurement of the change in depth relative to the screen area of the polygon, and r is the smallest value that is guaranteed to produce a resolvable offset for a given implementation. The offset is added before the depth test is performed and before the value is written into the depth buffer.

glPolygonOffset is useful for rendering hidden-line images, for applying decals to surfaces, and for rendering solids with highlighted edges.

Parameter factor

Specifies a scale factor that is used to create a variable depth offset for each polygon. The initial value is 0.

Parameter units

Is multiplied by an implementation-specific value to create a constant depth offset. The initial value is 0.

Throws

GL_INVALID_OPERATION is generated if glPolygonOffset is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glPopAttrib

void glPopAttrib()

Description

glPushAttrib takes one argument, a mask that indicates which groups of state variables to save on the attribute stack. Symbolic constants are used to set bits in the mask. mask is typically constructed by ORing several of these constants together. The special mask GL_ALL_ATTRIB_BITS can be used to save all stackable states.

The symbolic mask constants and their associated GL state are as follows (the second column lists which attributes are saved):

.TS ; l l . GL_ACCUM_BUFFER_BIT Accumulation buffer clear value

GL_COLOR_BUFFER_BIT GL_ALPHA_TEST enable bit Alpha test function and reference value GL_BLEND enable bit Blending source and destination functions Constant blend color Blending equation GL_DITHER enable bit GL_DRAW_BUFFER setting GL_COLOR_LOGIC_OP enable bit GL_INDEX_LOGIC_OP enable bit Logic op function Color mode and index mode clear values Color mode and index mode writemasks

GL_CURRENT_BIT Current RGBA color Current color index Current normal vector Current texture coordinates Current raster position GL_CURRENT_RASTER_POSITION_VALID flag RGBA color associated with current raster position Color index associated with current raster position Texture coordinates associated with current raster position GL_EDGE_FLAG flag

GL_DEPTH_BUFFER_BIT GL_DEPTH_TEST enable bit Depth buffer test function Depth buffer clear value GL_DEPTH_WRITEMASK enable bit

GL_ENABLE_BIT GL_ALPHA_TEST flag GL_AUTO_NORMAL flag GL_BLEND flag Enable bits for the user-definable clipping planes GL_COLOR_MATERIAL GL_CULL_FACE flag GL_DEPTH_TEST flag GL_DITHER flag GL_FOG flag GL_LIGHTi where 0\ <= i<GL_MAX_LIGHTS GL_LIGHTING flag GL_LINE_SMOOTH flag GL_LINE_STIPPLE flag GL_COLOR_LOGIC_OP flag GL_INDEX_LOGIC_OP flag GL_MAP1_x where x is a map type GL_MAP2_x where x is a map type GL_NORMALIZE flag GL_POINT_SMOOTH flag GL_POLYGON_OFFSET_LINE flag GL_POLYGON_OFFSET_FILL flag GL_POLYGON_OFFSET_POINT flag GL_POLYGON_SMOOTH flag GL_POLYGON_STIPPLE flag GL_SCISSOR_TEST flag GL_STENCIL_TEST flag GL_TEXTURE_1D flag GL_TEXTURE_2D flag Flags GL_TEXTURE_GEN_x where x is S, T, R, or Q

GL_EVAL_BIT GL_MAP1_x enable bits, where x is a map type GL_MAP2_x enable bits, where x is a map type 1D grid endpoints and divisions 2D grid endpoints and divisions GL_AUTO_NORMAL enable bit

GL_FOG_BIT GL_FOG enable bit Fog color Fog density Linear fog start Linear fog end Fog index GL_FOG_MODE value

GL_HINT_BIT GL_PERSPECTIVE_CORRECTION_HINT setting GL_POINT_SMOOTH_HINT setting GL_LINE_SMOOTH_HINT setting GL_POLYGON_SMOOTH_HINT setting GL_FOG_HINT setting

GL_LIGHTING_BIT GL_COLOR_MATERIAL enable bit GL_COLOR_MATERIAL_FACE value Color material parameters that are tracking the current color Ambient scene color GL_LIGHT_MODEL_LOCAL_VIEWER value GL_LIGHT_MODEL_TWO_SIDE setting GL_LIGHTING enable bit Enable bit for each light Ambient, diffuse, and specular intensity for each light Direction, position, exponent, and cutoff angle for each light Constant, linear, and quadratic attenuation factors for each light Ambient, diffuse, specular, and emissive color for each material Ambient, diffuse, and specular color indices for each material Specular exponent for each material GL_SHADE_MODEL setting

GL_LINE_BIT GL_LINE_SMOOTH flag GL_LINE_STIPPLE enable bit Line stipple pattern and repeat counter Line width

GL_LIST_BIT GL_LIST_BASE setting

GL_PIXEL_MODE_BIT GL_RED_BIAS and GL_RED_SCALE settings GL_GREEN_BIAS and GL_GREEN_SCALE values GL_BLUE_BIAS and GL_BLUE_SCALE GL_ALPHA_BIAS and GL_ALPHA_SCALE GL_DEPTH_BIAS and GL_DEPTH_SCALE GL_INDEX_OFFSET and GL_INDEX_SHIFT values GL_MAP_COLOR and GL_MAP_STENCIL flags GL_ZOOM_X and GL_ZOOM_Y factors GL_READ_BUFFER setting

GL_POINT_BIT GL_POINT_SMOOTH flag Point size

GL_POLYGON_BIT GL_CULL_FACE enable bit GL_CULL_FACE_MODE value GL_FRONT_FACE indicator GL_POLYGON_MODE setting GL_POLYGON_SMOOTH flag GL_POLYGON_STIPPLE enable bit GL_POLYGON_OFFSET_FILL flag GL_POLYGON_OFFSET_LINE flag GL_POLYGON_OFFSET_POINT flag GL_POLYGON_OFFSET_FACTOR GL_POLYGON_OFFSET_UNITS

GL_POLYGON_STIPPLE_BIT Polygon stipple image

GL_SCISSOR_BIT GL_SCISSOR_TEST flag Scissor box

GL_STENCIL_BUFFER_BIT GL_STENCIL_TEST enable bit Stencil function and reference value Stencil value mask Stencil fail, pass, and depth buffer pass actions Stencil buffer clear value Stencil buffer writemask

GL_TEXTURE_BIT Enable bits for the four texture coordinates Border color for each texture image Minification function for each texture image Magnification function for each texture image Texture coordinates and wrap mode for each texture image Color and mode for each texture environment Enable bits GL_TEXTURE_GEN_x, x is S, T, R, and Q GL_TEXTURE_GEN_MODE setting for S, T, R, and Q glTexGen plane equations for S, T, R, and Q Current texture bindings (for example, GL_TEXTURE_2D_BINDING)

GL_TRANSFORM_BIT Coefficients of the six clipping planes Enable bits for the user-definable clipping planes GL_MATRIX_MODE value GL_NORMALIZE flag

GL_VIEWPORT_BIT Depth range (near and far) Viewport origin and extent .TE

glPopAttrib restores the values of the state variables saved with the last

glPushAttrib command. Those not saved are left unchanged.

It is an error to push attributes onto a full stack, or to pop attributes off an empty stack. In either case, the error flag is set and no other change is made to GL state.

Initially, the attribute stack is empty.

Parameter mask

Specifies a mask that indicates which attributes to save. Values for mask are listed below.

Throws

GL_STACK_OVERFLOW is generated if glPushAttrib is called while the attribute stack is full.

GL_STACK_UNDERFLOW is generated if glPopAttrib is called while the attribute stack is empty.

GL_INVALID_OPERATION is generated if glPushAttrib or glPopAttrib is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glPopClientAttrib

void glPopClientAttrib()

Description

glPushClientAttrib takes one argument, a mask that indicates which groups of client-state variables to save on the client attribute stack. Symbolic constants are used to set bits in the mask. mask is typically constructed by OR'ing several of these constants together. The special mask GL_CLIENT_ALL_ATTRIB_BITS can be used to save all stackable client state.

The symbolic mask constants and their associated GL client state are as follows (the second column lists which attributes are saved):

GL_CLIENT_PIXEL_STORE_BIT Pixel storage modes

GL_CLIENT_VERTEX_ARRAY_BIT Vertex arrays (and enables)

glPopClientAttrib restores the values of the client-state variables saved with the last glPushClientAttrib. Those not saved are left unchanged.

It is an error to push attributes onto a full client attribute stack, or to pop attributes off an empty stack. In either case, the error flag is set, and no other change is made to GL state.

Initially, the client attribute stack is empty.

Parameter mask

Specifies a mask that indicates which attributes to save. Values for mask are listed below.

Throws

GL_STACK_OVERFLOW is generated if glPushClientAttrib is called while the attribute stack is full.

GL_STACK_UNDERFLOW is generated if glPopClientAttrib is called while the attribute stack is empty.


Method glPopMatrix

void glPopMatrix()

Description

There is a stack of matrices for each of the matrix modes. In GL_MODELVIEW mode, the stack depth is at least 32. In the other two modes, GL_PROJECTION and GL_TEXTURE, the depth is at least 2. The current matrix in any mode is the matrix on the top of the stack for that mode.

glPushMatrix pushes the current matrix stack down by one, duplicating the current matrix. That is, after a glPushMatrix call, the matrix on top of the stack is identical to the one below it.

glPopMatrix pops the current matrix stack, replacing the current matrix with the one below it on the stack.

Initially, each of the stacks contains one matrix, an identity matrix.

It is an error to push a full matrix stack, or to pop a matrix stack that contains only a single matrix. In either case, the error flag is set and no other change is made to GL state.

Throws

GL_STACK_OVERFLOW is generated if glPushMatrix is called while the current matrix stack is full.

GL_STACK_UNDERFLOW is generated if glPopMatrix is called while the current matrix stack contains only a single matrix.

GL_INVALID_OPERATION is generated if glPushMatrix or glPopMatrix is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glPopName

void glPopName()

Description

The name stack is used during selection mode to allow sets of rendering commands to be uniquely identified. It consists of an ordered set of unsigned integers and is initially empty.

glPushName causes name to be pushed onto the name stack. glPopName pops one name off the top of the stack.

The maximum name stack depth is implementation-dependent; call GL_MAX_NAME_STACK_DEPTH to find out the value for a particular implementation. It is an error to push a name onto a full stack, or to pop a name off an empty stack. It is also an error to manipulate the name stack between the execution of glBegin and the corresponding execution of glEnd. In any of these cases, the error flag is set and no other change is made to GL state.

The name stack is always empty while the render mode is not GL_SELECT. Calls to glPushName or glPopName while the render mode is not GL_SELECT are ignored.

Parameter name

Specifies a name that will be pushed onto the name stack.

Throws

GL_STACK_OVERFLOW is generated if glPushName is called while the name stack is full.

GL_STACK_UNDERFLOW is generated if glPopName is called while the name stack is empty.

GL_INVALID_OPERATION is generated if glPushName or glPopName is executed between a call to glBegin and the corresponding call to glEnd.


Method glPushAttrib

void glPushAttrib(int mask)

Description

glPushAttrib takes one argument, a mask that indicates which groups of state variables to save on the attribute stack. Symbolic constants are used to set bits in the mask. mask is typically constructed by ORing several of these constants together. The special mask GL_ALL_ATTRIB_BITS can be used to save all stackable states.

The symbolic mask constants and their associated GL state are as follows (the second column lists which attributes are saved):

.TS ; l l . GL_ACCUM_BUFFER_BIT Accumulation buffer clear value

GL_COLOR_BUFFER_BIT GL_ALPHA_TEST enable bit Alpha test function and reference value GL_BLEND enable bit Blending source and destination functions Constant blend color Blending equation GL_DITHER enable bit GL_DRAW_BUFFER setting GL_COLOR_LOGIC_OP enable bit GL_INDEX_LOGIC_OP enable bit Logic op function Color mode and index mode clear values Color mode and index mode writemasks

GL_CURRENT_BIT Current RGBA color Current color index Current normal vector Current texture coordinates Current raster position GL_CURRENT_RASTER_POSITION_VALID flag RGBA color associated with current raster position Color index associated with current raster position Texture coordinates associated with current raster position GL_EDGE_FLAG flag

GL_DEPTH_BUFFER_BIT GL_DEPTH_TEST enable bit Depth buffer test function Depth buffer clear value GL_DEPTH_WRITEMASK enable bit

GL_ENABLE_BIT GL_ALPHA_TEST flag GL_AUTO_NORMAL flag GL_BLEND flag Enable bits for the user-definable clipping planes GL_COLOR_MATERIAL GL_CULL_FACE flag GL_DEPTH_TEST flag GL_DITHER flag GL_FOG flag GL_LIGHTi where 0\ <= i<GL_MAX_LIGHTS GL_LIGHTING flag GL_LINE_SMOOTH flag GL_LINE_STIPPLE flag GL_COLOR_LOGIC_OP flag GL_INDEX_LOGIC_OP flag GL_MAP1_x where x is a map type GL_MAP2_x where x is a map type GL_NORMALIZE flag GL_POINT_SMOOTH flag GL_POLYGON_OFFSET_LINE flag GL_POLYGON_OFFSET_FILL flag GL_POLYGON_OFFSET_POINT flag GL_POLYGON_SMOOTH flag GL_POLYGON_STIPPLE flag GL_SCISSOR_TEST flag GL_STENCIL_TEST flag GL_TEXTURE_1D flag GL_TEXTURE_2D flag Flags GL_TEXTURE_GEN_x where x is S, T, R, or Q

GL_EVAL_BIT GL_MAP1_x enable bits, where x is a map type GL_MAP2_x enable bits, where x is a map type 1D grid endpoints and divisions 2D grid endpoints and divisions GL_AUTO_NORMAL enable bit

GL_FOG_BIT GL_FOG enable bit Fog color Fog density Linear fog start Linear fog end Fog index GL_FOG_MODE value

GL_HINT_BIT GL_PERSPECTIVE_CORRECTION_HINT setting GL_POINT_SMOOTH_HINT setting GL_LINE_SMOOTH_HINT setting GL_POLYGON_SMOOTH_HINT setting GL_FOG_HINT setting

GL_LIGHTING_BIT GL_COLOR_MATERIAL enable bit GL_COLOR_MATERIAL_FACE value Color material parameters that are tracking the current color Ambient scene color GL_LIGHT_MODEL_LOCAL_VIEWER value GL_LIGHT_MODEL_TWO_SIDE setting GL_LIGHTING enable bit Enable bit for each light Ambient, diffuse, and specular intensity for each light Direction, position, exponent, and cutoff angle for each light Constant, linear, and quadratic attenuation factors for each light Ambient, diffuse, specular, and emissive color for each material Ambient, diffuse, and specular color indices for each material Specular exponent for each material GL_SHADE_MODEL setting

GL_LINE_BIT GL_LINE_SMOOTH flag GL_LINE_STIPPLE enable bit Line stipple pattern and repeat counter Line width

GL_LIST_BIT GL_LIST_BASE setting

GL_PIXEL_MODE_BIT GL_RED_BIAS and GL_RED_SCALE settings GL_GREEN_BIAS and GL_GREEN_SCALE values GL_BLUE_BIAS and GL_BLUE_SCALE GL_ALPHA_BIAS and GL_ALPHA_SCALE GL_DEPTH_BIAS and GL_DEPTH_SCALE GL_INDEX_OFFSET and GL_INDEX_SHIFT values GL_MAP_COLOR and GL_MAP_STENCIL flags GL_ZOOM_X and GL_ZOOM_Y factors GL_READ_BUFFER setting

GL_POINT_BIT GL_POINT_SMOOTH flag Point size

GL_POLYGON_BIT GL_CULL_FACE enable bit GL_CULL_FACE_MODE value GL_FRONT_FACE indicator GL_POLYGON_MODE setting GL_POLYGON_SMOOTH flag GL_POLYGON_STIPPLE enable bit GL_POLYGON_OFFSET_FILL flag GL_POLYGON_OFFSET_LINE flag GL_POLYGON_OFFSET_POINT flag GL_POLYGON_OFFSET_FACTOR GL_POLYGON_OFFSET_UNITS

GL_POLYGON_STIPPLE_BIT Polygon stipple image

GL_SCISSOR_BIT GL_SCISSOR_TEST flag Scissor box

GL_STENCIL_BUFFER_BIT GL_STENCIL_TEST enable bit Stencil function and reference value Stencil value mask Stencil fail, pass, and depth buffer pass actions Stencil buffer clear value Stencil buffer writemask

GL_TEXTURE_BIT Enable bits for the four texture coordinates Border color for each texture image Minification function for each texture image Magnification function for each texture image Texture coordinates and wrap mode for each texture image Color and mode for each texture environment Enable bits GL_TEXTURE_GEN_x, x is S, T, R, and Q GL_TEXTURE_GEN_MODE setting for S, T, R, and Q glTexGen plane equations for S, T, R, and Q Current texture bindings (for example, GL_TEXTURE_2D_BINDING)

GL_TRANSFORM_BIT Coefficients of the six clipping planes Enable bits for the user-definable clipping planes GL_MATRIX_MODE value GL_NORMALIZE flag

GL_VIEWPORT_BIT Depth range (near and far) Viewport origin and extent .TE

glPopAttrib restores the values of the state variables saved with the last

glPushAttrib command. Those not saved are left unchanged.

It is an error to push attributes onto a full stack, or to pop attributes off an empty stack. In either case, the error flag is set and no other change is made to GL state.

Initially, the attribute stack is empty.

Parameter mask

Specifies a mask that indicates which attributes to save. Values for mask are listed below.

Throws

GL_STACK_OVERFLOW is generated if glPushAttrib is called while the attribute stack is full.

GL_STACK_UNDERFLOW is generated if glPopAttrib is called while the attribute stack is empty.

GL_INVALID_OPERATION is generated if glPushAttrib or glPopAttrib is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glPushClientAttrib

void glPushClientAttrib(int mask)

Description

glPushClientAttrib takes one argument, a mask that indicates which groups of client-state variables to save on the client attribute stack. Symbolic constants are used to set bits in the mask. mask is typically constructed by OR'ing several of these constants together. The special mask GL_CLIENT_ALL_ATTRIB_BITS can be used to save all stackable client state.

The symbolic mask constants and their associated GL client state are as follows (the second column lists which attributes are saved):

GL_CLIENT_PIXEL_STORE_BIT Pixel storage modes

GL_CLIENT_VERTEX_ARRAY_BIT Vertex arrays (and enables)

glPopClientAttrib restores the values of the client-state variables saved with the last glPushClientAttrib. Those not saved are left unchanged.

It is an error to push attributes onto a full client attribute stack, or to pop attributes off an empty stack. In either case, the error flag is set, and no other change is made to GL state.

Initially, the client attribute stack is empty.

Parameter mask

Specifies a mask that indicates which attributes to save. Values for mask are listed below.

Throws

GL_STACK_OVERFLOW is generated if glPushClientAttrib is called while the attribute stack is full.

GL_STACK_UNDERFLOW is generated if glPopClientAttrib is called while the attribute stack is empty.


Method glPushMatrix

void glPushMatrix()

Description

There is a stack of matrices for each of the matrix modes. In GL_MODELVIEW mode, the stack depth is at least 32. In the other two modes, GL_PROJECTION and GL_TEXTURE, the depth is at least 2. The current matrix in any mode is the matrix on the top of the stack for that mode.

glPushMatrix pushes the current matrix stack down by one, duplicating the current matrix. That is, after a glPushMatrix call, the matrix on top of the stack is identical to the one below it.

glPopMatrix pops the current matrix stack, replacing the current matrix with the one below it on the stack.

Initially, each of the stacks contains one matrix, an identity matrix.

It is an error to push a full matrix stack, or to pop a matrix stack that contains only a single matrix. In either case, the error flag is set and no other change is made to GL state.

Throws

GL_STACK_OVERFLOW is generated if glPushMatrix is called while the current matrix stack is full.

GL_STACK_UNDERFLOW is generated if glPopMatrix is called while the current matrix stack contains only a single matrix.

GL_INVALID_OPERATION is generated if glPushMatrix or glPopMatrix is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glPushName

void glPushName(int name)

Description

The name stack is used during selection mode to allow sets of rendering commands to be uniquely identified. It consists of an ordered set of unsigned integers and is initially empty.

glPushName causes name to be pushed onto the name stack. glPopName pops one name off the top of the stack.

The maximum name stack depth is implementation-dependent; call GL_MAX_NAME_STACK_DEPTH to find out the value for a particular implementation. It is an error to push a name onto a full stack, or to pop a name off an empty stack. It is also an error to manipulate the name stack between the execution of glBegin and the corresponding execution of glEnd. In any of these cases, the error flag is set and no other change is made to GL state.

The name stack is always empty while the render mode is not GL_SELECT. Calls to glPushName or glPopName while the render mode is not GL_SELECT are ignored.

Parameter name

Specifies a name that will be pushed onto the name stack.

Throws

GL_STACK_OVERFLOW is generated if glPushName is called while the name stack is full.

GL_STACK_UNDERFLOW is generated if glPopName is called while the name stack is empty.

GL_INVALID_OPERATION is generated if glPushName or glPopName is executed between a call to glBegin and the corresponding call to glEnd.


Method glRasterPos

void glRasterPos(float|int x, float|int y, float|int|void z, float|int|void w)
void glRasterPos(array(float|int) pos)

Description

The GL maintains a 3D position in window coordinates. This position, called the raster position, is used to position pixel and bitmap write operations. It is maintained with subpixel accuracy. See glBitmap, glDrawPixels, and glCopyPixels.

The current raster position consists of three window coordinates (x, y, z), a clip coordinate value (w), an eye coordinate distance, a valid bit, and associated color data and texture coordinates. The w coordinate is a clip coordinate, because w is not projected to window coordinates. The variable z defaults to 0 and w defaults to 1.

The object coordinates presented by glRasterPos are treated just like those of a glVertex command: They are transformed by the current modelview and projection matrices and passed to the clipping stage. If the vertex is not culled, then it is projected and scaled to window coordinates, which become the new current raster position, and the GL_CURRENT_RASTER_POSITION_VALID flag is set. If the vertex .I is culled, then the valid bit is cleared and the current raster position and associated color and texture coordinates are undefined.

The current raster position also includes some associated color data and texture coordinates. If lighting is enabled, then GL_CURRENT_RASTER_COLOR (in RGBA mode) or GL_CURRENT_RASTER_INDEX (in color index mode) is set to the color produced by the lighting calculation (see glLight, glLightModel, and

glShadeModel). If lighting is disabled, current color (in RGBA mode, state variable GL_CURRENT_COLOR) or color index (in color index mode, state variable GL_CURRENT_INDEX) is used to update the current raster color.

Likewise, GL_CURRENT_RASTER_TEXTURE_COORDS is updated as a function of GL_CURRENT_TEXTURE_COORDS, based on the texture matrix and the texture generation functions (see glTexGen). Finally, the distance from the origin of the eye coordinate system to the vertex as transformed by only the modelview matrix replaces GL_CURRENT_RASTER_DISTANCE.

Initially, the current raster position is (0, 0, 0, 1), the current raster distance is 0, the valid bit is set, the associated RGBA color is (1, 1, 1, 1), the associated color index is 1, and the associated texture coordinates are (0, 0, 0, 1). In RGBA mode, GL_CURRENT_RASTER_INDEX is always 1; in color index mode, the current raster RGBA color always maintains its initial value.

Parameter x

Specify the x, y, z, and w object coordinates (if present) for the raster position.

Parameter v

Specifies a pointer to an array of two, three, or four elements, specifying x, y, z, and w coordinates, respectively.

Throws

GL_INVALID_OPERATION is generated if glRasterPos is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glReadBuffer

void glReadBuffer(int mode)

Description

glReadBuffer specifies a color buffer as the source for subsequent glReadPixels, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D, and glCopyPixels commands. mode accepts one of twelve or more predefined values. (GL_AUX0 through GL_AUX3 are always defined.) In a fully configured system, GL_FRONT, GL_LEFT, and GL_FRONT_LEFT all name the front left buffer, GL_FRONT_RIGHT and GL_RIGHT name the front right buffer, and GL_BACK_LEFT and GL_BACK name the back left buffer.

Nonstereo double-buffered configurations have only a front left and a back left buffer. Single-buffered configurations have a front left and a front right buffer if stereo, and only a front left buffer if nonstereo. It is an error to specify a nonexistent buffer to glReadBuffer.

mode is initially GL_FRONT in single-buffered configurations, and GL_BACK in double-buffered configurations.

Parameter mode

Specifies a color buffer. Accepted values are GL_FRONT_LEFT, GL_FRONT_RIGHT, GL_BACK_LEFT, GL_BACK_RIGHT, GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT, and GL_AUXi, where i is between 0 and GL_AUX_BUFFERS -1.

Throws

GL_INVALID_ENUM is generated if mode is not one of the twelve (or more) accepted values.

GL_INVALID_OPERATION is generated if mode specifies a buffer that does not exist.

GL_INVALID_OPERATION is generated if glReadBuffer is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glRenderMode

void glRenderMode(int mode)

Description

glRenderMode sets the rasterization mode. It takes one argument, mode, which can assume one of three predefined values:

GL_RENDER Render mode. Primitives are rasterized, producing pixel fragments, which are written into the frame buffer. This is the normal mode and also the default mode.
GL_SELECT Selection mode. No pixel fragments are produced, and no change to the frame buffer contents is made. Instead, a record of the names of primitives that would have been drawn if the render mode had been GL_RENDER is returned in a select buffer, which must be created (see glSelectBuffer) before selection mode is entered.
GL_FEEDBACK Feedback mode. No pixel fragments are produced, and no change to the frame buffer contents is made. Instead, the coordinates and attributes of vertices that would have been drawn if the render mode had been GL_RENDER is returned in a feedback buffer, which must be created (see glFeedbackBuffer) before feedback mode is entered.

The return value of glRenderMode is determined by the render mode at the time glRenderMode is called, rather than by mode. The values returned for the three render modes are as follows:

GL_RENDER 0.
GL_SELECT The number of hit records transferred to the select buffer.
GL_FEEDBACK The number of values (not vertices) transferred to the feedback buffer.

See the glSelectBuffer and glFeedbackBuffer reference pages for more details concerning selection and feedback operation.

Parameter mode

Specifies the rasterization mode. Three values are accepted: GL_RENDER, GL_SELECT, and GL_FEEDBACK. The initial value is GL_RENDER.

Throws

GL_INVALID_ENUM is generated if mode is not one of the three accepted values.

GL_INVALID_OPERATION is generated if glSelectBuffer is called while the render mode is GL_SELECT, or if glRenderMode is called with argument GL_SELECT before glSelectBuffer is called at least once.

GL_INVALID_OPERATION is generated if glFeedbackBuffer is called while the render mode is GL_FEEDBACK, or if glRenderMode is called with argument GL_FEEDBACK before glFeedbackBuffer is called at least once.

GL_INVALID_OPERATION is generated if glRenderMode is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glRotate

void glRotate(float|int|array(float|int) angle, float|int|void x, float|int|void y, float|int|void z)

Description

glRotate produces a rotation of angle degrees around the vector ("x", "y", "z"). The current matrix (see glMatrixMode) is multiplied by a rotation matrix with the product replacing the current matrix, as if glMultMatrix were called with the following matrix as its argument:

.ce .EQ left ( ~ down 20 matrix { ccol { "x" "x" (1 - c)+ c above "y" "x" (1 - c)+ "z" s above "x" "z" (1 - c)-"y" s above ~0 } ccol {"x" "y" (1 - c)-"z" s above "y" "y" (1 - c)+ c above "y" "z" (1 - c)+ "x" s above ~0 } ccol { "x" "z" (1 - c)+ "y" s above "y" "z" (1 - c)- "x" s above "z" "z" (1 - c) + c above ~0 } ccol { ~0 above ~0 above ~0 above ~1} } ~~ right ) .EN

.sp Where c ~=~ cos("angle"), s ~=~ sine("angle"), and ||(~"x", "y", "z"~)|| ~=~ 1 (if not, the GL will normalize this vector). .sp .sp

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after glRotate is called are rotated. Use glPushMatrix and glPopMatrix to save and restore the unrotated coordinate system.

Parameter angle

Specifies the angle of rotation, in degrees.

Parameter x

Specify the x, y, and z coordinates of a vector, respectively.

Throws

GL_INVALID_OPERATION is generated if glRotate is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glScale

void glScale(float|int|array(float|int) x, float|int|void y, float|int|void z)

Description

glScale produces a nonuniform scaling along the x, y, and z axes. The three parameters indicate the desired scale factor along each of the three axes.

The current matrix (see glMatrixMode) is multiplied by this scale matrix, and the product replaces the current matrix as if glScale were called with the following matrix as its argument:

.ce .EQ left ( ~ down 20 matrix { ccol { ~"x" above ~0 above ~0 above ~0 } ccol { ~0 above ~"y" above ~0 above ~0 } ccol { ~0 above ~0 above ~"z" above ~0 } ccol { ~0 above ~0 above ~0 above ~1} } ~~ right ) .EN .sp If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after glScale is called are scaled.

Use glPushMatrix and glPopMatrix to save and restore the unscaled coordinate system.

Parameter x

Specify scale factors along the x, y, and z axes, respectively.

Throws

GL_INVALID_OPERATION is generated if glScale is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glScissor

void glScissor(int x, int y, int width, int height)

Description

glScissor defines a rectangle, called the scissor box, in window coordinates. The first two arguments, x and y, specify the lower left corner of the box. width and height specify the width and height of the box.

To enable and disable the scissor test, call glEnable and glDisable with argument GL_SCISSOR_TEST. The test is initially disabled. While the test is enabled, only pixels that lie within the scissor box can be modified by drawing commands. Window coordinates have integer values at the shared corners of frame buffer pixels. \f7glScissor(0,0,1,1)\fP allows modification of only the lower left pixel in the window, and \f7glScissor(0,0,0,0)\fP doesn't allow modification of any pixels in the window.

When the scissor test is disabled, it is as though the scissor box includes the entire window.

Parameter x

Specify the lower left corner of the scissor box. Initially (0, 0).

Parameter width

Specify the width and height of the scissor box. When a GL context is first attached to a window, width and height are set to the dimensions of that window.

Throws

GL_INVALID_VALUE is generated if either width or height is negative.

GL_INVALID_OPERATION is generated if glScissor is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glShadeModel

void glShadeModel(int mode)

Description

GL primitives can have either flat or smooth shading. Smooth shading, the default, causes the computed colors of vertices to be interpolated as the primitive is rasterized, typically assigning different colors to each resulting pixel fragment. Flat shading selects the computed color of just one vertex and assigns it to all the pixel fragments generated by rasterizing a single primitive. In either case, the computed color of a vertex is the result of lighting if lighting is enabled, or it is the current color at the time the vertex was specified if lighting is disabled.

Flat and smooth shading are indistinguishable for points. Starting when glBegin is issued and counting vertices and primitives from 1, the GL gives each flat-shaded line segment i the computed color of vertex i + 1, its second vertex. Counting similarly from 1, the GL gives each flat-shaded polygon the computed color of the vertex listed in the following table. This is the last vertex to specify the polygon in all cases except single polygons, where the first vertex specifies the flat-shaded color. .sp .TS center box; l | c . primitive type of polygon i vertex = Single polygon ( i == 1 ) 1 Triangle strip i + 2 Triangle fan i + 2 Independent triangle 3 i Quad strip 2 i + 2 Independent quad 4 i .TE .sp Flat and smooth shading are specified by glShadeModel with mode set to GL_FLAT and GL_SMOOTH, respectively.

Parameter mode

Specifies a symbolic value representing a shading technique. Accepted values are GL_FLAT and GL_SMOOTH. The initial value is GL_SMOOTH.

Throws

GL_INVALID_ENUM is generated if mode is any value other than GL_FLAT or GL_SMOOTH.

GL_INVALID_OPERATION is generated if glShadeModel is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glStencilFunc

void glStencilFunc(int func, int ref, int mask)

Description

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You draw into the stencil planes using GL drawing primitives, then render geometry and images, using the stencil planes to mask out portions of the screen. Stenciling is typically used in multipass rendering algorithms to achieve special effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between the reference value and the value in the stencil buffer. To enable and disable the test, call glEnable and glDisable with argument GL_STENCIL_TEST. To specify actions based on the outcome of the stencil test, call glStencilOp.

func is a symbolic constant that determines the stencil comparison function. It accepts one of eight values, shown in the following list. ref is an integer reference value that is used in the stencil comparison. It is clamped to the range [0,2 sup n - 1], where n is the number of bitplanes in the stencil buffer. mask is bitwise ANDed with both the reference value and the stored stencil value, with the ANDed values participating in the comparison. .P If stencil represents the value stored in the corresponding stencil buffer location, the following list shows the effect of each comparison function that can be specified by func. Only if the comparison succeeds is the pixel passed through to the next stage in the rasterization process (see glStencilOp). All tests treat stencil values as unsigned integers in the range [0,2 sup n - 1], where n is the number of bitplanes in the stencil buffer.

The following values are accepted by func:

GL_NEVER Always fails.
GL_LESS Passes if ( ref & mask ) < ( stencil & mask ).
GL_LEQUAL Passes if ( ref & mask ) \(<= ( stencil & mask ).
GL_GREATER Passes if ( ref & mask ) > ( stencil & mask ).
GL_GEQUAL Passes if ( ref & mask ) \(>= ( stencil & mask ).
GL_EQUAL Passes if ( ref & mask ) = ( stencil & mask ).
GL_NOTEQUAL Passes if ( ref & mask ) \(!= ( stencil & mask ).
GL_ALWAYS Always passes.

Parameter func

Specifies the test function. Eight tokens are valid: GL_NEVER, GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL, and GL_ALWAYS. The initial value is GL_ALWAYS.

Parameter ref

Specifies the reference value for the stencil test. ref is clamped to the range [0,2 sup n - 1], where n is the number of bitplanes in the stencil buffer. The initial value is 0.

Parameter mask

Specifies a mask that is ANDed with both the reference value and the stored stencil value when the test is done. The initial value is all 1's.

Throws

GL_INVALID_ENUM is generated if func is not one of the eight accepted values.

GL_INVALID_OPERATION is generated if glStencilFunc is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glStencilMask

void glStencilMask(int mask)

Description

glStencilMask controls the writing of individual bits in the stencil planes. The least significant n bits of mask, where n is the number of bits in the stencil buffer, specify a mask. Where a 1 appears in the mask, it's possible to write to the corresponding bit in the stencil buffer. Where a 0 appears, the corresponding bit is write-protected. Initially, all bits are enabled for writing.

Parameter mask

Specifies a bit mask to enable and disable writing of individual bits in the stencil planes. Initially, the mask is all 1's.

Throws

GL_INVALID_OPERATION is generated if glStencilMask is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glStencilOp

void glStencilOp(int fail, int zfail, int zpass)

Description

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You draw into the stencil planes using GL drawing primitives, then render geometry and images, using the stencil planes to mask out portions of the screen. Stenciling is typically used in multipass rendering algorithms to achieve special effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between the value in the stencil buffer and a reference value. To enable and disable the test, call glEnable and glDisable with argument GL_STENCIL_TEST; to control it, call glStencilFunc.

glStencilOp takes three arguments that indicate what happens to the stored stencil value while stenciling is enabled. If the stencil test fails, no change is made to the pixel's color or depth buffers, and fail specifies what happens to the stencil buffer contents. The following six actions are possible.

GL_KEEP Keeps the current value.
GL_ZERO Sets the stencil buffer value to 0.
GL_REPLACE Sets the stencil buffer value to ref, as specified by glStencilFunc.
GL_INCR Increments the current stencil buffer value. Clamps to the maximum representable unsigned value.
GL_DECR Decrements the current stencil buffer value. Clamps to 0.
GL_INVERT Bitwise inverts the current stencil buffer value.

Stencil buffer values are treated as unsigned integers. When incremented and decremented, values are clamped to 0 and 2 sup n - 1, where n is the value returned by querying GL_STENCIL_BITS.

The other two arguments to glStencilOp specify stencil buffer actions that depend on whether subsequent depth buffer tests succeed (zpass) or fail (zfail) (see

glDepthFunc). The actions are specified using the same six symbolic constants as fail. Note that zfail is ignored when there is no depth buffer, or when the depth buffer is not enabled. In these cases, fail and zpass specify stencil action when the stencil test fails and passes, respectively.

Parameter fail

Specifies the action to take when the stencil test fails. Six symbolic constants are accepted: GL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR, GL_DECR, and GL_INVERT. The initial value is GL_KEEP.

Parameter zfail

Specifies the stencil action when the stencil test passes, but the depth test fails. zfail accepts the same symbolic constants as fail. The initial value is GL_KEEP.

Parameter zpass

Specifies the stencil action when both the stencil test and the depth test pass, or when the stencil test passes and either there is no depth buffer or depth testing is not enabled. zpass accepts the same symbolic constants as fail. The initial value is GL_KEEP.

Throws

GL_INVALID_ENUM is generated if fail, zfail, or zpass is any value other than the six defined constant values.

GL_INVALID_OPERATION is generated if glStencilOp is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glTexCoord

void glTexCoord(float|int|array(float|int) s, float|int|void t, float|int|void r, float|int|void q)

Description

glTexCoord specifies texture coordinates in one, two, three, or four dimensions. glTexCoord1 sets the current texture coordinates to (s, 0, 0, 1); a call to

glTexCoord2 sets them to (s, t, 0, 1). Similarly, glTexCoord3 specifies the texture coordinates as (s, t, r, 1), and glTexCoord4 defines all four components explicitly as (s, t, r, q).

The current texture coordinates are part of the data that is associated with each vertex and with the current raster position. Initially, the values for s, t, r, and q are (0, 0, 0, 1).

Parameter s

Specify s, t, r, and q texture coordinates. Not all parameters are present in all forms of the command.

Parameter v

Specifies a pointer to an array of one, two, three, or four elements, which in turn specify the s, t, r, and q texture coordinates.


Method glTexEnv

void glTexEnv(int target, int pname, float|int|array(float|int) param)

Description

A texture environment specifies how texture values are interpreted when a fragment is textured. target must be GL_TEXTURE_ENV. pname can be either GL_TEXTURE_ENV_MODE or GL_TEXTURE_ENV_COLOR.

If pname is GL_TEXTURE_ENV_MODE, then params is (or points to) the symbolic name of a texture function. Four texture functions may be specified: GL_MODULATE, GL_DECAL, GL_BLEND, and GL_REPLACE.

A texture function acts on the fragment to be textured using the texture image value that applies to the fragment (see glTexParameter) and produces an RGBA color for that fragment. The following table shows how the RGBA color is produced for each of the three texture functions that can be chosen. C is a triple of color values (RGB) and A is the associated alpha value. RGBA values extracted from a texture image are in the range [0,1]. The subscript f refers to the incoming fragment, the subscript t to the texture image, the subscript c to the texture environment color, and subscript v indicates a value produced by the texture function.

A texture image can have up to four components per texture element (see glTexImage1D, glTexImage2D, glCopyTexImage1D, and glCopyTexImage2D). In a one-component image, L sub t indicates that single component. A two-component image uses L sub t and A sub t. A three-component image has only a color value, C sub t. A four-component image has both a color value C sub t and an alpha value A sub t.

.ne .TS center box tab(:) ; ci || ci s s s ci || c c c c c || c | c | c | c. Base internal:Texture functions format:GL_MODULATE:GL_DECAL:GL_BLEND:GL_REPLACE = GL_ALPHA:C sub v = C sub f:undefined:C sub v = C sub f:C sub v = C sub f \^ :A sub v = A sub f A sub t:\^:A sub v = A sub f:A sub v = A sub t _ GL_LUMINANCE:C sub v = L sub t C sub f:undefined:C sub v = ( 1 - L sub t ) C sub f:C sub v = L sub t 1: : :+ L sub t C sub c: : : : : : A sub v = A sub f:\^: A sub v = A sub f:A sub v = A sub f _ GL_LUMINANCE:C sub v = L sub t C sub f:undefined:C sub v = ( 1 - L sub t ) C sub f :C sub v = L sub t \_ALPHA: : : + L sub t C sub c 2: : : : :A sub v = A sub t A sub f:\^:A sub v = A sub t A sub f:A sub v = A sub t _ GL_INTENSITY:C sub v = C sub f I sub t:undefined:C sub v = ( 1 - I sub t ) C sub f :C sub v = I sub t : : :+ I sub t C sub c : : : : \^ :A sub v = A sub f I sub t:\^:A sub v = ( 1 - I sub t ) A sub f :A sub v = I sub t : : :+ I sub t A sub c: _ GL_RGB:C sub v = C sub t C sub f:C sub v = C sub t:C sub v = (1 - C sub t) C sub f :C sub v = C sub t 3: : : + C sub t C sub c : : : : :A sub v = A sub f:A sub v = A sub f:A sub v = A sub f:A sub v = A sub f _ GL_RGBA:C sub v = C sub t C sub f:C sub v = ( 1 - A sub t ) C sub f :C sub v = (1 - C sub t) C sub f :C sub v = C sub t 4: :+ A sub t C sub t: + C sub t C sub c : : : : :A sub v = A sub t A sub f:A sub v = A sub f:A sub v = A sub t A sub f:A sub v = A sub t .TE .sp If pname is GL_TEXTURE_ENV_COLOR, params is a pointer to an array that holds an RGBA color consisting of four values. Integer color components are interpreted linearly such that the most positive integer maps to 1.0, and the most negative integer maps to -1.0. The values are clamped to the range [0,1] when they are specified. C sub c takes these four values.

GL_TEXTURE_ENV_MODE defaults to GL_MODULATE and GL_TEXTURE_ENV_COLOR defaults to (0, 0, 0, 0).

Parameter target

Specifies a texture environment. Must be GL_TEXTURE_ENV.

Parameter pname

Specifies the symbolic name of a single-valued texture environment parameter. Must be GL_TEXTURE_ENV_MODE.

Parameter param

Specifies a single symbolic constant, one of GL_MODULATE, GL_DECAL, GL_BLEND, or GL_REPLACE.

Parameter target

Specifies a texture environment. Must be GL_TEXTURE_ENV.

Parameter pname

Specifies the symbolic name of a texture environment parameter. Accepted values are GL_TEXTURE_ENV_MODE and GL_TEXTURE_ENV_COLOR.

Parameter params

Specifies a pointer to a parameter array that contains either a single symbolic constant or an RGBA color.

Throws

GL_INVALID_ENUM is generated when target or pname is not one of the accepted defined values, or when params should have a defined constant value (based on the value of pname) and does not.

GL_INVALID_OPERATION is generated if glTexEnv is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glTexGen

void glTexGen(int coord, int pname, float|int|array(float|int) param)

Description

glTexGen selects a texture-coordinate generation function or supplies coefficients for one of the functions. coord names one of the (s, t, r, q) texture coordinates; it must be one of the symbols GL_S, GL_T, GL_R, or GL_Q. pname must be one of three symbolic constants: GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or GL_EYE_PLANE. If pname is GL_TEXTURE_GEN_MODE, then params chooses a mode, one of GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP. If pname is either GL_OBJECT_PLANE or GL_EYE_PLANE, params contains coefficients for the corresponding texture generation function. .P If the texture generation function is GL_OBJECT_LINEAR, the function

.ce g = p sub 1 x sub o + p sub 2 y sub o + p sub 3 z sub o + p sub 4 w sub o

is used, where g is the value computed for the coordinate named in coord, p sub 1, p sub 2, p sub 3, and p sub 4 are the four values supplied in params, and x sub o, y sub o, z sub o, and w sub o are the object coordinates of the vertex. This function can be used, for example, to texture-map terrain using sea level as a reference plane (defined by p sub 1, p sub 2, p sub 3, and p sub 4). The altitude of a terrain vertex is computed by the GL_OBJECT_LINEAR coordinate generation function as its distance from sea level; that altitude can then be used to index the texture image to map white snow onto peaks and green grass onto foothills.

If the texture generation function is GL_EYE_LINEAR, the function

.ce g = {p sub 1} sup prime ~x sub e + {p sub 2} sup prime ~y sub e + {p sub 3} sup prime ~z sub e + {p sub 4} sup prime ~w sub e

is used, where

.ce $( {p sub 1} sup prime ~~{p sub 2} sup prime~~{p sub 3} sup prime~~ {{p sub 4}sup prime}) = ( p sub 1~~ p sub 2~~ p sub 3~~ p sub 4 ) ~M sup -1$

and x sub e, y sub e, z sub e, and w sub e are the eye coordinates of the vertex, p sub 1, p sub 2, p sub 3, and p sub 4 are the values supplied in params, and M is the modelview matrix when glTexGen is invoked. If M is poorly conditioned or singular, texture coordinates generated by the resulting function may be inaccurate or undefined.

Note that the values in params define a reference plane in eye coordinates. The modelview matrix that is applied to them may not be the same one in effect when the polygon vertices are transformed. This function establishes a field of texture coordinates that can produce dynamic contour lines on moving objects.

If pname is GL_SPHERE_MAP and coord is either GL_S or GL_T, s and t texture coordinates are generated as follows. Let u be the unit vector pointing from the origin to the polygon vertex (in eye coordinates). Let n sup prime be the current normal, after transformation to eye coordinates. Let

.ce f ~=~ ( f sub x~~f sub y~~f sub z ) sup T be the reflection vector such that

.ce f ~=~ u ~-~ 2 n sup prime n sup prime sup T u

Finally, let m ~=~ 2 sqrt { f sub x sup {~2} + f sub y sup {~2} + (f sub z + 1 ) sup 2}. Then the values assigned to the s and t texture coordinates are

.ce 1 s ~=~ f sub x over m ~+~ 1 over 2 .sp .ce 1 t ~=~ f sub y over m ~+~ 1 over 2

To enable or disable a texture-coordinate generation function, call glEnable or glDisable with one of the symbolic texture-coordinate names (GL_TEXTURE_GEN_S, GL_TEXTURE_GEN_T, GL_TEXTURE_GEN_R, or GL_TEXTURE_GEN_Q) as the argument. When enabled, the specified texture coordinate is computed according to the generating function associated with that coordinate. When disabled, subsequent vertices take the specified texture coordinate from the current set of texture coordinates. Initially, all texture generation functions are set to GL_EYE_LINEAR and are disabled. Both s plane equations are (1, 0, 0, 0), both t plane equations are (0, 1, 0, 0), and all r and q plane equations are (0, 0, 0, 0).

Parameter coord

Specifies a texture coordinate. Must be one of GL_S, GL_T, GL_R, or GL_Q.

Parameter pname

Specifies the symbolic name of the texture-coordinate generation function. Must be GL_TEXTURE_GEN_MODE.

Parameter param

Specifies a single-valued texture generation parameter, one of GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP.

Parameter coord

Specifies a texture coordinate. Must be one of GL_S, GL_T, GL_R, or GL_Q.

Parameter pname

Specifies the symbolic name of the texture-coordinate generation function or function parameters. Must be GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or GL_EYE_PLANE.

Parameter params

Specifies a pointer to an array of texture generation parameters. If pname is GL_TEXTURE_GEN_MODE, then the array must contain a single symbolic constant, one of GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP. Otherwise, params holds the coefficients for the texture-coordinate generation function specified by pname.

Throws

GL_INVALID_ENUM is generated when coord or pname is not an accepted defined value, or when pname is GL_TEXTURE_GEN_MODE and params is not an accepted defined value.

GL_INVALID_ENUM is generated when pname is GL_TEXTURE_GEN_MODE, params is GL_SPHERE_MAP, and coord is either GL_R or GL_Q.

GL_INVALID_OPERATION is generated if glTexGen is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glTexImage2D

void glTexImage2D(int target, int level, int internalformat, object|mapping(string:object) width, object|mapping(string:object) height, int border, object|mapping(string:object) format, object|mapping(string:object) type, array(object|mapping(string:object)) pixels)

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is enabled. To enable and disable two-dimensional texturing, call glEnable and glDisable with argument GL_TEXTURE_2D.

To define texture images, call glTexImage2D. The arguments describe the parameters of the texture image, such as height, width, width of the border, level-of-detail number (see glTexParameter), and number of color components provided. The last three arguments describe how the image is represented in memory; they are identical to the pixel formats used for glDrawPixels.

If target is GL_PROXY_TEXTURE_2D, no data is read from pixels, but all of the texture image state is recalculated, checked for consistency, and checked against the implementation's capabilities. If the implementation cannot handle a texture of the requested texture size, it sets all of the image state to 0, but does not generate an error (see glGetError). To query for an entire mipmap array, use an image array level greater than or equal to 1. .P If target is GL_TEXTURE_2D, data is read from pixels as a sequence of signed or unsigned bytes, shorts, or longs, or single-precision floating-point values, depending on type. These values are grouped into sets of one, two, three, or four values, depending on format, to form elements. If type is GL_BITMAP, the data is considered as a string of unsigned bytes (and format must be GL_COLOR_INDEX). Each data byte is treated as eight 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (see glPixelStore).

The first element corresponds to the lower left corner of the texture image. Subsequent elements progress left-to-right through the remaining texels in the lowest row of the texture image, and then in successively higher rows of the texture image. The final element corresponds to the upper right corner of the texture image.

format determines the composition of each element in pixels. It can assume one of nine symbolic values:

GL_COLOR_INDEX Each element is a single value, a color index. The GL converts it to fixed point (with an unspecified number of zero bits to the right of the binary point), shifted left or right depending on the value and sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see glPixelTransfer). The resulting index is converted to a set of color components using the GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A tables, and clamped to the range [0,1].
GL_RED Each element is a single red component. The GL converts it to floating point and assembles it into an RGBA element by attaching 0 for green and blue, and 1 for alpha. Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).
GL_GREEN Each element is a single green component. The GL converts it to floating point and assembles it into an RGBA element by attaching 0 for red and blue, and 1 for alpha. Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).
GL_BLUE Each element is a single blue component. The GL converts it to floating point and assembles it into an RGBA element by attaching 0 for red and green, and 1 for alpha. Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).
GL_ALPHA Each element is a single alpha component. The GL converts it to floating point and assembles it into an RGBA element by attaching 0 for red, green, and blue. Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).
GL_RGB Each element is an RGB triple. The GL converts it to floating point and assembles it into an RGBA element by attaching 1 for alpha. Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).
GL_RGBA Each element contains all four components. Each component is multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).
GL_LUMINANCE Each element is a single luminance value. The GL converts it to floating point, then assembles it into an RGBA element by replicating the luminance value three times for red, green, and blue and attaching 1 for alpha. Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).
GL_LUMINANCE_ALPHA Each element is a luminance/alpha pair. The GL converts it to floating point, then assembles it into an RGBA element by replicating the luminance value three times for red, green, and blue. Each component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).

Refer to the glDrawPixels reference page for a description of the acceptable values for the type parameter.

If an application wants to store the texture at a certain resolution or in a certain format, it can request the resolution and format with internalformat. The GL will choose an internal representation that closely approximates that requested by internalformat, but it may not match exactly. (The representations specified by GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match exactly. The numeric values 1, 2, 3, and 4 may also be used to specify the above representations.)

Use the GL_PROXY_TEXTURE_2D target to try out a resolution and format. The implementation will update and recompute its best match for the requested storage resolution and format. To then query this state, call glGetTexLevelParameter. If the texture cannot be accommodated, texture state is set to 0.

A one-component texture image uses only the red component of the RGBA color extracted from pixels. A two-component image uses the R and A values. A three-component image uses the R, G, and B values. A four-component image uses all of the RGBA components.

Parameter target

Specifies the target texture. Must be GL_TEXTURE_2D or GL_PROXY_TEXTURE_2D.

Parameter level

Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap reduction image.

Parameter internalformat

Specifies the number of color components in the texture. Must be 1, 2, 3, or 4, or one of the following symbolic constants: GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16, GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4, GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY, GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

Parameter width

Specifies the width of the texture image. Must be 2 sup n + 2 ( "border" ) for some integer n. All implementations support texture images that are at least 64 texels wide.

Parameter height

Specifies the height of the texture image. Must be 2 sup m + 2 ( "border" ) for some integer m. All implementations support texture images that are at least 64 texels high.

Parameter border

Specifies the width of the border. Must be either 0 or 1.

Parameter format

Specifies the format of the pixel data. The following symbolic values are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

Parameter type

Specifies the data type of the pixel data. The following symbolic values are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

Parameter pixels

Specifies a pointer to the image data in memory.

Throws

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D or GL_PROXY_TEXTURE_2D.

GL_INVALID_ENUM is generated if format is not an accepted format constant. Format constants other than GL_STENCIL_INDEX and GL_DEPTH_COMPONENT are accepted.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_VALUE is generated if level is less than 0. .P .P GL_INVALID_VALUE may be generated if level is greater than $log sub 2$max, where max is the returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if internalformat is not 1, 2, 3, 4, or one of the accepted resolution and format symbolic constants.

GL_INVALID_VALUE is generated if width or height is less than 0 or greater than 2 + GL_MAX_TEXTURE_SIZE, or if either cannot be represented as 2 sup k + 2("border") for some integer value of k.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_OPERATION is generated if glTexImage2D is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glTexParameter

void glTexParameter(int target, int pname, float|int|array(float|int) param)

Description

Texture mapping is a technique that applies an image onto an object's surface as if the image were a decal or cellophane shrink-wrap. The image is created in texture space, with an (s, t) coordinate system. A texture is a one- or two-dimensional image and a set of parameters that determine how samples are derived from the image.

glTexParameter assigns the value or values in params to the texture parameter specified as pname. target defines the target texture, either GL_TEXTURE_1D or GL_TEXTURE_2D. The following symbols are accepted in pname:

GL_TEXTURE_MIN_FILTER The texture minifying function is used whenever the pixel being textured maps to an area greater than one texture element. There are six defined minifying functions. Two of them use the nearest one or nearest four texture elements to compute the texture value. The other four use mipmaps. A mipmap is an ordered set of arrays representing the same image at progressively lower resolutions. If the texture has dimensions 2 sup n times 2 sup m, there are bold max ( n, m ) + 1 mipmaps. The first mipmap is the original texture, with dimensions 2 sup n times 2 sup m. Each subsequent mipmap has dimensions 2 sup { k - 1 } times 2 sup { l - 1 }, where 2 sup k times 2 sup l are the dimensions of the previous mipmap, until either k = 0 or l=0. At that point, subsequent mipmaps have dimension 1 times 2 sup { l - 1 } or 2 sup { k - 1} times 1 until the final mipmap, which has dimension 1 times 1. To define the mipmaps, call glTexImage1D, glTexImage2D, glCopyTexImage1D, or glCopyTexImage2D with the level argument indicating the order of the mipmaps. Level 0 is the original texture; level bold max ( n, m ) is the final 1 times 1 mipmap. params supplies a function for minifying the texture as one of the following: .RS 10
GL_NEAREST Returns the value of the texture element that is nearest (in Manhattan distance) to the center of the pixel being textured.
GL_LINEAR Returns the weighted average of the four texture elements that are closest to the center of the pixel being textured. These can include border texture elements, depending on the values of GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, and on the exact mapping.
GL_NEAREST_MIPMAP_NEAREST Chooses the mipmap that most closely matches the size of the pixel being textured and uses the GL_NEAREST criterion (the texture element nearest to the center of the pixel) to produce a texture value.
GL_LINEAR_MIPMAP_NEAREST Chooses the mipmap that most closely matches the size of the pixel being textured and uses the GL_LINEAR criterion (a weighted average of the four texture elements that are closest to the center of the pixel) to produce a texture value.
GL_NEAREST_MIPMAP_LINEAR Chooses the two mipmaps that most closely match the size of the pixel being textured and uses the GL_NEAREST criterion (the texture element nearest to the center of the pixel) to produce a texture value from each mipmap. The final texture value is a weighted average of those two values.
GL_LINEAR_MIPMAP_LINEAR Chooses the two mipmaps that most closely match the size of the pixel being textured and uses the GL_LINEAR criterion (a weighted average of the four texture elements that are closest to the center of the pixel) to produce a texture value from each mipmap. The final texture value is a weighted average of those two values. .RE As more texture elements are sampled in the minification process, fewer aliasing artifacts will be apparent. While the GL_NEAREST and GL_LINEAR minification functions can be faster than the other four, they sample only one or four texture elements to determine the texture value of the pixel being rendered and can produce moire patterns or ragged transitions. The initial value of GL_TEXTURE_MIN_FILTER is GL_NEAREST_MIPMAP_LINEAR.
GL_TEXTURE_MAG_FILTER The texture magnification function is used when the pixel being textured maps to an area less than or equal to one texture element. It sets the texture magnification function to either GL_NEAREST or GL_LINEAR (see below). GL_NEAREST is generally faster than GL_LINEAR, but it can produce textured images with sharper edges because the transition between texture elements is not as smooth. The initial value of GL_TEXTURE_MAG_FILTER is GL_LINEAR. .RS 10
GL_NEAREST Returns the value of the texture element that is nearest (in Manhattan distance) to the center of the pixel being textured.
GL_LINEAR Returns the weighted average of the four texture elements that are closest to the center of the pixel being textured. These can include border texture elements, depending on the values of GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, and on the exact mapping.

.RE

GL_TEXTURE_WRAP_S Sets the wrap parameter for texture coordinate s to either GL_CLAMP or GL_REPEAT. GL_CLAMP causes s coordinates to be clamped to the range [0,1] and is useful for preventing wrapping artifacts when mapping a single image onto an object. GL_REPEAT causes the integer part of the s coordinate to be ignored; the GL uses only the fractional part, thereby creating a repeating pattern. Border texture elements are accessed only if wrapping is set to GL_CLAMP. Initially, GL_TEXTURE_WRAP_S is set to GL_REPEAT.

GL_TEXTURE_WRAP_T Sets the wrap parameter for texture coordinate t to either GL_CLAMP or GL_REPEAT. See the discussion under GL_TEXTURE_WRAP_S. Initially, GL_TEXTURE_WRAP_T is set to GL_REPEAT.
GL_TEXTURE_BORDER_COLOR Sets a border color. params contains four values that comprise the RGBA color of the texture border. Integer color components are interpreted linearly such that the most positive integer maps to 1.0, and the most negative integer maps to -1.0. The values are clamped to the range [0,1] when they are specified. Initially, the border color is (0, 0, 0, 0).
GL_TEXTURE_PRIORITY Specifies the texture residence priority of the currently bound texture. Permissible values are in the range [0,\ 1]. See glPrioritizeTextures and glBindTexture for more information.

Parameter target

Specifies the target texture, which must be either GL_TEXTURE_1D or GL_TEXTURE_2D.

Parameter pname

Specifies the symbolic name of a single-valued texture parameter. pname can be one of the following: GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG_FILTER, GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, or GL_TEXTURE_PRIORITY.

Parameter param

Specifies the value of pname.

Parameter target

Specifies the target texture, which must be either GL_TEXTURE_1D or GL_TEXTURE_2D.

Parameter pname

Specifies the symbolic name of a texture parameter. pname can be one of the following: GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG_FILTER, GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, GL_TEXTURE_BORDER_COLOR, or GL_TEXTURE_PRIORITY.

Parameter params

Specifies a pointer to an array where the value or values of pname are stored.

Throws

GL_INVALID_ENUM is generated if target or pname is not one of the accepted defined values.

GL_INVALID_ENUM is generated if params should have a defined constant value (based on the value of pname) and does not.

GL_INVALID_OPERATION is generated if glTexParameter is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glTexSubImage2D

void glTexSubImage2D(int target, int level, int xoffset, int yoffset, object|mapping(string:object) width, object|mapping(string:object) height, object|mapping(string:object) format, object|mapping(string:object) type, array(object|mapping(string:object)) pixels)

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is enabled. To enable and disable two-dimensional texturing, call glEnable and glDisable with argument GL_TEXTURE_2D.

glTexSubImage2D redefines a contiguous subregion of an existing two-dimensional texture image. The texels referenced by pixels replace the portion of the existing texture array with x indices xoffset and "xoffset"~+~"width"~-~1, inclusive, and y indices yoffset and "yoffset"~+~"height"~-~1, inclusive. This region may not include any texels outside the range of the texture array as it was originally specified. It is not an error to specify a subtexture with zero width or height, but such a specification has no effect.

Parameter target

Specifies the target texture. Must be GL_TEXTURE_2D.

Parameter level

Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap reduction image.

Parameter xoffset

Specifies a texel offset in the x direction within the texture array.

Parameter yoffset

Specifies a texel offset in the y direction within the texture array.

Parameter width

Specifies the width of the texture subimage.

Parameter height

Specifies the height of the texture subimage.

Parameter format

Specifies the format of the pixel data. The following symbolic values are accepted: GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

Parameter type

Specifies the data type of the pixel data. The following symbolic values are accepted: GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

Parameter pixels

Specifies a pointer to the image data in memory.

Throws

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous glTexImage2D operation.

GL_INVALID_VALUE is generated if level is less than 0. .P P GL_INVALID_VALUE may be generated if level is greater than log sub 2max, where max is the returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if "xoffset" ~<~ ~-b, ("xoffset"~+~"width") ~>~ (w~-~b), "yoffset" ~<~ ~-b, or ("yoffset" ~+~ "height") ~>~ (h~-~b). Where w is the GL_TEXTURE_WIDTH, h is the GL_TEXTURE_HEIGHT, and b is the border width of the texture image being modified. Note that w and h include twice the border width.

GL_INVALID_VALUE is generated if width or height is less than 0.

GL_INVALID_ENUM is generated if format is not an accepted format constant.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_OPERATION is generated if glTexSubImage2D is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glTranslate

void glTranslate(float|int|array(float|int) x, float|int|void y, float|int|void z)

Description

glTranslate produces a translation by ("x","y","z"). The current matrix (see

glMatrixMode) is multiplied by this translation matrix, with the product replacing the current matrix, as if glMultMatrix were called with the following matrix for its argument: .sp .ce .EQ left ( ~ down 20 matrix { ccol { 1~~ above 0~~ above 0~~ above 0~~ } ccol { 0~~ above 1~~ above 0~~ above 0~~ } ccol { 0~~ above 0~~ above 1~~ above 0~~ } ccol { "x"~ above "y"~ above "z"~ above 1} } ~~right ) .EN .sp .RE If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after a call to glTranslate are translated.

Use glPushMatrix and glPopMatrix to save and restore the untranslated coordinate system.

Parameter x

Specify the x, y, and z coordinates of a translation vector.

Throws

GL_INVALID_OPERATION is generated if glTranslate is executed between the execution of glBegin and the corresponding execution of glEnd.


Method glVertex

void glVertex(float|int|array(float|int) x, float|int|void y, float|int|void z, float|int|void w)

Description

glVertex commands are used within glBegin/glEnd pairs to specify point, line, and polygon vertices. The current color, normal, and texture coordinates are associated with the vertex when glVertex is called.

When only x and y are specified, z defaults to 0 and w defaults to 1. When x, y, and z are specified, w defaults to 1.

Parameter x

Specify x, y, z, and w coordinates of a vertex. Not all parameters are present in all forms of the command.

Parameter v

Specifies a pointer to an array of two, three, or four elements. The elements of a two-element array are x and y; of a three-element array, x, y, and z; and of a four-element array, x, y, z, and w.


Method glViewport

void glViewport(int x, int y, int width, int height)

Description

glViewport specifies the affine transformation of x and y from normalized device coordinates to window coordinates. Let (x sub nd, y sub nd) be normalized device coordinates. Then the window coordinates (x sub w, y sub w) are computed as follows: .sp .ce .EQ x sub w ~=~ ( x sub nd + 1 ) left ( "width" over 2 right ) ~+~ "x" .EN .sp .ce .EQ y sub w ~=~ ( y sub nd + 1 ) left ( "height" over 2 right ) ~+~ "y" .EN .RE

Viewport width and height are silently clamped to a range that depends on the implementation. To query this range, call glGet with argument GL_MAX_VIEWPORT_DIMS.

Parameter x

Specify the lower left corner of the viewport rectangle, in pixels. The initial value is (0,0).

Parameter width

Specify the width and height of the viewport. When a GL context is first attached to a window, width and height are set to the dimensions of that window.

Throws

GL_INVALID_VALUE is generated if either width or height is negative.

GL_INVALID_OPERATION is generated if glViewport is executed between the execution of glBegin and the corresponding execution of glEnd.

Module GL.GLSLUtils

Description

This module contains various utilities that greatly simplifies working with GLSL and some other extensions such as vertex buffers and render buffers.


Method add_shader_define

void add_shader_define(string x)

Description

Add a preprocessing define that will be used for all shader compilations from now forward.


Method add_shader_path

void add_shader_path(string x)

Description

Adds a directory to the list of directories where shaders can be found.


Method clear_shader_defines

void clear_shader_defines()

Description

Remove all preprocessing defines.


Method get_program

GLSLProgram get_program(string filename)

Description

Convenice function to compile and cache a GLSLProgram


Method set_shader_ext

void set_shader_ext(string x)

Description

Set the extension added to all shader filerequests. The default is to never add an extension, which means that the full filename has to be specified.

Class GL.GLSLUtils.GLSLProgram

Description

This class keeps track of all state related to a GLSL program, such as the shaders (vertex and pixel), the uniform variables and any vertex buffer objects or textures.


Method add_texture

void add_texture(string name, int|object type_or_texture, int|void id)

Description

Adds a texture to the list of textures used by the shader. If this function is used the allocation of texture units is done automatically by this class.

There are really two variants of this function: If type_or_texture is an integer, the id indicates the texture object ID (as given by glGenTextures), and type_or_texture indicates the texture type (GL_TEXTURE_2D etc).

If type_or_texture is an object, it's assumed that there is a texture_type member variable (indicating the texture type, such as GL_TEXTURE_2D) and a use method that will bind the texture to the currently active texture unit.

The GLUE.Texture class meets these requirements. The RenderBuffer objects does not, however.

A RenderBuffer can be added as an texture by calling add_texture( name, buffer->texture_type, buffer->texture )

There are currently no checks done to ensure that you don't use more textures than there are texture units on your graphics card.


Method add_vertex_buffer

void add_vertex_buffer(VertexBuffer vbo)

Description

Add all vertex attributes defined in the VertexBuffer vbo. This is equivalent to calling vertex_pointer once for each attribute (with the difference that stride, size and offset are calculated automatically for you)


Method compile_file

int compile_file(string file_name)

Description

Compile the shader source found in file_name. If filename is relative, the paths added by add_shader_path will be searched. If -1 is returned, no file was compiled.

This function is usually called from the create method, but if no filename is passed there you can call this function (or the compile_string function) to specify the source.

The file is compiled twice, once with VERTEX_SHADER defined, the other time with FRAGMENT_SHADER defined.

The functions vertex_main and fragment_main are special, in that when the vertex shader is compiled vertex_main is renamed to main and fragment_main is totally removed from the source. When the fragment shader is compiled it's the other way around.


Method compile_string

int compile_string(string code, string path)

Description

Compile the given string as a pixel/vertex shader. The string is compiled twice, once with VERTEX_SHADER defined, the other time with FRAGMENT_SHADER defined.

The functions vertex_main and fragment_main are special, in that when the vertex shader is compiled vertex_main is renamed to main and fragment_main is totally removed from the source. When the fragment shader is compiled it's the other way around.

This is done to make it easier to develop shaders, it's generally speaking more convenient to have them in one file that it is to have them in two.


Method create

GL.GLSLUtils.GLSLProgram GL.GLSLUtils.GLSLProgram(string|void name)

Description

Create a new GLSL shader. If name is specified, it indicates a filename passed to compile_file.


Method disable

void disable()

Description

Disable this program. This will also disable all extra texture units that were needed to render with it, if any, and unbind the vertex pointer attributes, if any.


Method draw

void draw(function(:void) x, mixed ... args)

Description

Call the function x(@args) with this program activated.

This will bind all texture units to their correct textures, set up any vertex pointers that have been defined, and set uniforms to their value.

Once the function has been called, all texture units except the default one will be disabled, and the vertex array pointers will be reset.


Method set

void set(string name, mixed ... to)

Description

Set the uniform variable name to the value to (one or more floats or integers). The value will remain in effect until the next time this function is called (even if another program is used in between)


Method use

void use()

Description

Enable the program, setting all uniform variables to their values as set by set, enabling the required number of texture units and binding the correct textures, as given by add_texture and finally initializing any vertex pointers set using vertex_pointer or add_vertex_buffer.


Method vertex

void vertex(string name, mixed ... to)

Description

Set the vertex attribute name to to. to is one or more floats or integers.

The attibute will have this value for all new glVertex calls until this function is called again.


Method vertex_pointer

void vertex_pointer(string name, int ptr, int size, int type, bool normalize, int stride, int offset)

Description

Add a single vertex attribute pointer. This is usually used in combination with glDrawArrays to quickly draw a lot of primitives.

name is the name of the vertex type variable in the program. ptr is the vertex buffer ID. size is the size of the attribute (a vec3 has size 3, as an example) type is the type, usually GL_FLOAT (actually, anything else requires extensions not currently supported by this class) If normalize is true, the value will be clamped between 0.0 and 1.0. stride is the distance between two attributes of this type in the buffer, and offset is the offset from the start of the buffer to the first attribute.

Class GL.GLSLUtils.RenderBuffer

Description

A rendering buffer. This is usually used to do offscreeen-rendering with higher precision, or full-screen special effects such as blur etc. This class is not present if there is no FramebufferTexture2DEXT extention available. To my knowledge all cards with GLSL support also support this feature.


Variable mipmaps
Variable alpha

bool GL.GLSLUtils.RenderBuffer.mipmaps
bool GL.GLSLUtils.RenderBuffer.alpha

Description

Does the RenderBuffer has mipmaps and alpha channel?


Variable db

int GL.GLSLUtils.RenderBuffer.db

Description

The object ID of the depth buffer object, if any. Otherwise -1


Variable fbo

int GL.GLSLUtils.RenderBuffer.fbo

Description

The object ID of the FBO object


Variable internal_format
Variable format

int GL.GLSLUtils.RenderBuffer.internal_format
int GL.GLSLUtils.RenderBuffer.format

Description

The format of the texture object


Variable width
Variable height

int GL.GLSLUtils.RenderBuffer.width
int GL.GLSLUtils.RenderBuffer.height

Description

Width and height, in pixels, of the buffer


Variable texture

int GL.GLSLUtils.RenderBuffer.texture

Description

The object ID of the texture object.


Variable texture_type

int GL.GLSLUtils.RenderBuffer.texture_type

Description

The type of the texture, GL_TEXTURE_2D or GL_TEXTURE_RECTANGLE_ARB typically.


Method box

void box(float x, float y, float w, float h)

Description

Draw the buffer using a GL_QUADS at x,y sized w,h. This function knows about GL_TEXTURE_2D and GL_TEXTURE_RECTANGLE_ARB texture coordinates, but not any other ones.


Method create

GL.GLSLUtils.RenderBuffer GL.GLSLUtils.RenderBuffer(int w, int h, int type, bool depth, bool mipmap, bool alpha, int|void internal_format, int|void format)

Description

Create a new render buffer, with the size given by w and h, the texture target will be type (generally speaking GL_TEXTURE_2D or GL_TEXTURE_RECTANGLE_ARB, the latter is needed if the size is not a power of two. This is not checked by the create function)

depth mipmap and alpha specifies if the corresponding extra buffers should be created. mipmap is not supported for GL_TEXTURE_RECTANGLE_ARB

If w or h is 0, the actual texture creation is postponed until resize is called. The buffer will not be valid before it has a size.

If internal_format and format are specified they are used to override the defaults (GL_RGB[A]16F_ARB and GL_RGB[A] respectively)

Setting these also makes the buffer ignore the alpha paramenter.

The mipmap parameter depends on the existance of the glGenerateMipmapEXT extension.


Method disable

void disable()

Description

Restore the viewport and bind the screen as the active rendering buffer.


Method draw

void draw(function(:void) f, mixed ... args)

Description

Convenience function that binds the buffer as the currently active destination buffer, then calls f and finally binds the default framebuffer (generally speaking the screen) as the active buffer again.

This is equivalent to use followed by f(args) followed by disable

This function is usually what is used to draw into a RenderBuffer.


Method draw_texture

void draw_texture(function(:void) f)

Description

Bind the buffer to the currently active texture unit, then call the specified function.


Method resize

bool resize(int w, int h)

Description

Resize the buffer to a new size. Returns true if a new texture was created.


Method size

array(float) size()

Description

Width and height, suitable for texture coordinates, of the buffer. For GL_TEXTURE_2D this is always 1.0 x 1.0. For GL_TEXTURE_RECTANGLE_ARB it's the pixel sizes (as floats)

This function knows about GL_TEXTURE_2D and GL_TEXTURE_RECTANGLE_ARB texture coordinates, but not any other ones.


Method use

void use()

Description

Set the viewport to the size of the texture, and set this buffer as the currently active destination framebuffer.

disable() must be called (exactly once) once you are done drawing into this buffer, or OpenGL will run out of attribute stack space eventually since the current viewport is pused to it.

draw will do the use() / disable() handling for you.

Class GL.GLSLUtils.VertexBuffer

Description

This class defines a vertex buffer. This is a chunk of memory defining vertex attributes for future drawing. Any number of vertex buffers (up to a hardware specific limit) can be added to any GLSLProgram.

Vertex buffers are generally speaking stored on the graphic card for fast access, making it possible to draw huge amounts of primitives without using all available CPU->GPU memory bandwidth.

Normal usage of this class is to create it, then call add_[type] for each vertex attribute (add_float, add_vec2 etc) defined in your program, then call set_size or set_data to set the size of the buffer, add the VertexBuffer to any relevant GLSLProgram instances, and then optionally call pwrite, vertex or stream_vertex() to update the data.

The add_* functions can not be called once the VertexBuffer has been added to a GLSLProgram. set_size, set_data or recalc must be called before the VertexBuffer is added to a GLSLProgram.


Variable current_size

int GL.GLSLUtils.VertexBuffer.current_size

Description

The maximum offset ever written using stream


Variable id

int GL.GLSLUtils.VertexBuffer.id

Description

The vertexbuffer id (the object id passed to glBindBuffer).


Variable offset

int GL.GLSLUtils.VertexBuffer.offset

Description

The index of the last vertex that was written using stream


Variable size

int GL.GLSLUtils.VertexBuffer.size

Description

The total size of the VertexBuffer, counted in vertices


Variable stride

int GL.GLSLUtils.VertexBuffer.stride

Description

The size of a single vertex, in bytes


Variable vertex_size

int GL.GLSLUtils.VertexBuffer.vertex_size

Description

The size of a single vertex, in floats


Method add_alias

void add_alias(string name, string name2, int|void size)

Description

Add name as an alias for name2. As an example add_alias( "normal", "pos") will make the vertex attribute normal have the same value as pos without using additional storage.

The size can be smaller than the size for the original attribute, but never larger. If no size is given they will have the same size.


Method add_attribute

void add_attribute(string name, int type, bool normalize, int size)

Description

Add a generic attribute named name, of the type type (eg, GL_FLOAT), normalized or not of size size.

As an example add_vec2(name) is an alias for add_attribute( name, GL_FLOAT, GL_FALSE, 2 )


Method add_float

void add_float(string name)

Description

Add a float attribute named name.


Method add_vec2

void add_vec2(string name)

Description

Add a vec2 attribute named name.


Method add_vec3

void add_vec3(string name)

Description

Add a vec3 attribute named name.


Method add_vec4

void add_vec4(string name)

Description

Add a vec4 attribute named name.


Method attributes

array(array(string|int|bool)) attributes()

Description

Method used by GLSLProgram to get a list of the attributes.


Method create

GL.GLSLUtils.VertexBuffer GL.GLSLUtils.VertexBuffer(int draw_mode)

Description

Create a new vertex buffer, draw_mode is a usage hint.

GL_STREAM_DRAW: Draw multiple times, updating the data ocassionally GL_STATIC_DRAW: Set the data once, then draw multiple times GL_DYNAMIC_DRAW: Draw and update all the time

The mode is only a hint, it does not really affect the functionality of the buffer.


Method pwrite

void pwrite(int offset, array(float) data)

Description

Write data at the byteoffset offset. The size of a vertex is given by the stride member variable in this class.

It's usually more convenient to use the vertex or stream methods when updating data.


Method recalc

void recalc()

Description

Recalculate the offsets for all attributes. Normally called automatically from set_data and set_size.


Method set_data

void set_data(array(float) data)

Description

Set the data to an array of floating point numbers. The attributes are always ordered in the array according to the order the various add_* functions were called. Note that add_alias does not add a new attribute, only an alias for an existing one.


Method set_size

void set_size(int size)

Description

Set the size of the VertexBuffer. The size is given in stride increments. That is, it defines the number of complete vertexes that can be generated from this buffer, not the number of floats or bytes in it.

set_size will remove all the data that was previously present in the buffer.


Method stream

void stream(array(float) data)

Description

Append the data to the current object. Once the end of the buffer has been reached, start over from the beginning. This is useful for particle systems of various kinds, where each vertex (or every few vertices) indicate a separate particle that evolves over time using a GLSLProgram, and there is no need to send the whole list to the graphic card each frame.

When calling glDrawArrays using this kind of VertexBuffer, use the current_size member variable, it indicates the last fully written vertice.


Method vertex

void vertex(int vertex, array(float) data)

Description

Give data starting at the given vertex. Any number of vertices up to the full size of the VertexBuffer can be written from this point onwards.

Class GL.GLSLUtils.VertexBuffer.Attribute


Variable name
Variable type
Variable normalize
Variable size
Variable offset

string GL.GLSLUtils.VertexBuffer.Attribute.name
int GL.GLSLUtils.VertexBuffer.Attribute.type
bool GL.GLSLUtils.VertexBuffer.Attribute.normalize
int GL.GLSLUtils.VertexBuffer.Attribute.size
int GL.GLSLUtils.VertexBuffer.Attribute.offset


Method __create__

protected local void __create__(string name, int type, bool normalize, int size, int offset)


Method create

GL.GLSLUtils.VertexBuffer.Attribute GL.GLSLUtils.VertexBuffer.Attribute(string name, int type, bool normalize, int size, int offset)

Class GL.GLSLUtils.vec

Description

A very basic vector class. Use vec2 / vec3 or vec4

Class GL.GLSLUtils.vec2

Description

A vector class somewhat similar to a GLSL vec2.


Inherit vec

inherit vec : vec

Class GL.GLSLUtils.vec3

Description

A vector class somewhat similar to a GLSL vec3.


Inherit vec

inherit vec : vec

Class GL.GLSLUtils.vec4

Description

A vector class somewhat similar to a GLSL vec4.


Inherit vec

inherit vec : vec

Module GLU

Description

The GL Utilities module is a partial implementation of the GLU library. This module only contains functions that someone at some point actually needed to get his work done. If you need a GLU function that isn't in here, copy the C code from the GLU library (Mesa was used last time), tweak it so that it compiles as Pike code and then check it in into git.


Method gluLookAt

void gluLookAt(float eyex, float eyey, float eyez, float centerx, float centery, float centerz, float upx, float upy, float upz)
void gluLookAt(Math.Matrix eye, Math.Matrix center, Math.Matrix up)

Description

gluLookAt creates a viewing matrix derived from an eye point, a reference point indicating the center of the scene, and an up vector. The matrix maps the reference point to the negative z axis and the eye point to the origin, so that, when a typical projection matrix is used, the center of the scene maps to the center of the viewport. Similarly, the direction described by the up vector projected onto the viewing plane is mapped to the positive y axis so that it points upward in the viewport. The up vector must not be parallel to the line of sight from the eye to the reference point.

The matrix generated by gluLookAt postmultiplies the current matrix.

The relation between the matrix objects and the float values are

Math.Matrix eye = Math.Matrix( ({ eyex, eyey, eyez }) );
See also

GL.glFrustum, gluPerspective


Method gluOrtho2D

void gluOrtho2D(float left, float right, float bottom, float top)

Description

gluOrtho2D sets up a two-dimensional orthographic viewing region. This is equivalent to calling

glOrtho(left, right, bottom, top, -1.0, 1.0);
FIXME

The GLU manual says glOrtho(a,b,c,d, 0, 1).

See also

GL.glOrtho, gluPerspective


Method gluPerspective

void gluPerspective(float fovy, float aspect, float zNear, float zFar)

Description

gluPerspective specifies a viewing frustum into the world coordinate system. In general, the aspect ratio in gluPerspective should match the aspect ratio of the associated viewport. For example, aspect = 2.0 means the viewer's angle of view is twice as wide in x as it is in y. If the viewport is twice as wide as it is tall, it displays the image without distortion.

The matrix generated by gluPerspective is multipled by the current matrix, just as if GL.glMultMatrix were called with the generated matrix. To load the perspective matrix onto the current matrix stack instead, precede the call to gluPerspective with a call to GL.glLoadIdentity.


Method gluPickMatrix

void gluPickMatrix(float x, float y, float width, float height, array(int) viewport)

Description

gluPickMatrix creates a projection matrix that can be used to restrict drawing to a small region of the viewport. This is typically useful to determine what objects are being drawn near the cursor. Use gluPickMatrix to restrict drawing to a small region around the cursor. Then, enter selection mode (with GL.glRenderMode and rerender the scene. All primitives that would have been drawn near the cursor are identified and stored in the selection buffer.

The matrix created by gluPickMatrix is multiplied by the current matrix just as if GL.glMultMatrix is called with the generated matrix. To effectively use the generated pick matrix for picking, first call GL.glLoadIdentity to load an identity matrix onto the perspective matrix stack. Then call gluPickMatrix, and finally, call a command (such as gluPerspective) to multiply the perspective matrix by the pick matrix.

When using gluPickMatrix to pick NURBS, be careful to turn off the NURBS property GLU_AUTO_LOAD_MATRIX. If GLU_AUTO_LOAD_MATRIX is not turned off, then any NURBS surface rendered is subdivided differently with the pick matrix than the way it was subdivided without the pick matrix.

Parameter viewport

The viewport is an array with four integers.

FIXME

Does the NURB remark apply?

See also

GL.glGet, gluLoadIdentity, gluMultMatrix, gluRenderMode, gluPerspective


Method gluProject

array(float)|zero gluProject(float objx, float objy, float objz, array(float) model, array(float) proj, array(int) viewport)

Description

gluProject transforms the specified object coordinates into window coordinates using model, proj, and viewport. The result is returned in a three valued array.

Module GLUE

Description

GL Universal Environment


Method PushPop

void PushPop(function(:void) f)

Description

Performs function f between GL.glPushMatrix and GL.glPopMatrix calls.

Example

PushPop() { GL.glTranslate( 0.01, -0.9, 0.0 ); write_text( "Press esc to quit" ); };


Method add_reinit_callback

void add_reinit_callback(function(void:void) f)

Description

Add a callback that will be called every time the resolution is about to change.

See also

remove_reinit_callback


Method allocate_light

int allocate_light()

Description

Allocate a hardwareaccelerated lightsource from OpenGL.

Returns

an id which may be added to the GL.GL_LIGHT0 constant.

See also

free_light


Method debug_stuff

mapping(string:mixed) debug_stuff()

Description

Returns some internal states for debug purposes. The actual content may change.


Method draw_box

void draw_box(float x0, float y0, float x1, float y1, array(Image.Color.Color)|Image.Color.Color c, void|array(float)|float a)

Description

Draw a box at the specified coordinates. c is either a single color, in which case it will be used for all corners, or an array of four colors, which will be used for each corner.

a is similar to c, but is the alpha values for each coordinate.


Method draw_line

void draw_line(float x0, float y0, float x1, float y1, Image.Color.Color c, void|float a)
void draw_line(float x0, float y0, float z0, float x1, float y1, float z1, Image.Color.Color c, void|float a)


Method draw_obox

void draw_obox(float x0, float y0, float x1, float y1, array(Image.Color.Color)|Image.Color.Color c, void|array(float)|float a)

Description

Draw a box outline around the specified coordinates. c is either a single color, in which case it will be used for all corners, or an array of four colors, which will be used for each corner.

a is similar to c, but is the alpha values for each coordinate.


Method draw_polygon

void draw_polygon(array(float) coords, Image.Color.Color c, float a)


Method free_light

void free_light(int l)

Description

Call this function to free a lightsource that has been allocated with allocate_light.

Parameter l

Id which has been allocated using allocate_light.

See also

allocate_light


Method get_all_lists

array(List) get_all_lists()

Description

Returns all defined lists. Only available on Windows.


Method get_all_textures

array(BaseTexture) get_all_textures()

Description

Returns a list of all current textures.


Method get_aspect

float get_aspect()

Description

Returns the screen aspect.

See also

set_aspect


Method get_depth

int get_depth()

Description

Returns the current color depth.

See also

set_depth


Method get_drivers

array(string) get_drivers()

Description

Returns the name of the available drivers.

See also

init


Method get_gl_flags

int get_gl_flags()

Description

Returns the GL flags currently used.

See also

set_gl_flags


Method get_screen_mode

bool get_screen_mode()

Description

Returns 1 if in fullscreen mode, otherwise 0.

See also

toggle_fullscreen


Method get_texture_mem_usage

int get_texture_mem_usage()

Description

Returns the number of bytes used by the textures.


Method has_extension

bool has_extension(string ext)

Description

Checks if the GL extension ext is currently supported.


Method hide_cursor

void hide_cursor()

Description

Hide the mouse cursor.


Method init

void init(mapping(string:mixed)|void options)

Description

Initializes GLUE and loads a driver from a list of drivers. If a driver fails to load or initialize, the next driver is tried.

Throws

driver_names not listed in the result from get_drivers will cause an error to be thrown.

Parameter options
"driver_names" : string|array(string)

The name of a driver or a list of drivers to try, in given order. If no driver name is given, the list given by get_drivers is used.

"event_callback" : function(.Events.Event:void)

This callback is called with a Events.Event object whenever an event is trapped by the driver. If no event callback is given, a callback that calls exit(0) on Escape and Exit events is used.

"resize_callback" : function(float, bool:void)

This callback is called with the aspect whenever the drawing area is resized, either by an event or explicitly by the program.

"fullscreen" : bool

Set fullscreen/window mode. 1 is fullscreen, 0 is window. Defaults to fullscreen.

"resolution" : array(int)

Sets the resolution of the drawing area. Defaults to ({ 800, 600 }).

"aspect" : float

Sets the aspect of the drawing area. Defaults to 1.333333 (4:3).

"depth" : int

Sets the color depth of the drawing area. Defaults to 32.

"title" : string

Sets the window title to this string.

"icon_title" : string

Sets the icon title to this string.

"fast_mipmap" : bool

Use GL_NEAREST_MIMAP_NEAREST instead of GL_LINEAR_MIPMAP_LINEAR, which also is the default.

"rotation" : float

The rotation in z-axis of the drawing field.

"mirror" : string

Mirroring in x and/or y axis.

See also

get_drivers


Method make_rect_texture

BaseTexture make_rect_texture(mapping|Image.Image image, string|void name)

Description

Create a texture with the specified image as contents. Will try to use the TEXTURE_RECTANGLE_NV extension if available, otherwise normal textures will be used (like make_texture).

See also

make_texture


Method make_texture

BaseTexture make_texture(mapping|Image.Image image, string|void name)

Description

Create a texture. Mainly here for symetry with make_rect_texture

See also

Texture, make_rect_texture


Method mirror_screen

void mirror_screen(string how)

Description

Mirrors the screen in x and/or y axis. Useful e.g. when drawing for backlight projection.

Parameter how

A string that contains the mirror axis, e.g. "x" or "xy".


Method only_dynlists

bool only_dynlists()

Description

Returns 1 if all defined lists are DynList lists.


Method pushpop_depth

int(0..) pushpop_depth()

Description

Returns the PushPop depth, i.e. the number of pushes awaiting corresponding pops.


Method remove_reinit_callback

void remove_reinit_callback(function(void:void) f)

Description

Removes a reinitialization callback.

See also

add_reinit_callback


Method set_aspect

void set_aspect(float asp)
void set_aspect(int w, int h)

Description

Set the aspect of the draw area. Does nothing if the provided aspect is equal to the one currently used.

See also

get_aspect


Method set_depth

void set_depth(int _depth)

Description

Sets the color depth.

See also

get_depth


Method set_gl_flags

void set_gl_flags(int _gl_flags)

Description

Sets the GL flags.

See also

get_gl_flags


Method set_resolution

void set_resolution(int w, int h)

Description

Sets the resolution to wxh pixels.

See also

xsize, ysize


Method set_screen_rotation

void set_screen_rotation(float deg)

Description

Rotates the drawing area deg degrees. Useful e.g. when drawing for tilted monitors.


Method show_cursor

void show_cursor()

Description

Show the mouse cursor.


Method swap_buffers

void swap_buffers()

Description

Swap the drawing buffer and the viewing buffer.


Method toggle_fullscreen

void toggle_fullscreen(void|bool _fullscreen)

Description

Toggles between fullscreen and window mode. If a screen mode is provided, that mode will be assumed.

See also

get_screen_mode


Method xsize
Method ysize

int xsize()
int ysize()

Description

Returns the screen width/height.

See also

set_resolution

Class GLUE.BaseDWIM

Description

A mixin class with a dwim create function.


Method create

GLUE.BaseDWIM GLUE.BaseDWIM(mixed ... args)

Description

This create function has the following heuristic:

If a mapping is encountered, the following information will be attempted to be extracted.

"image" : Image.Image

The texture image.

"xsize" : int

The image dimensions. If not provided, the dimensions of the "image" member will be used.

"ysize" : int
"height" : int
"width" : int
"alpha" : int

The alpha mode.

"mipmap" : bool

Should the texture be mipmapped or not.

"clamp" : bool

Should the texture be clamped or not.

"mode" : int

The texture mode.

"debug" : string

The debug name associated with this texture.

If an object is encountered in the argument list, the first object will be used as texture image and the second as texture alpha.

If a string is encountered in the argument list, it will be used as debug name associated with this texture.

Once all mappings, strings and objects are removed from the argument list, the remaining integers will be interpreted as width, height, alpha, mipmap and mode, unless there is only one argument. In that case it will be interpreted as the alpha mode.

Class GLUE.BaseTexture

Description

The texture base class. Using e.g. Texture might be more convenient.


Variable debug

string GLUE.BaseTexture.debug

Description

A string to identify the texture.


Variable width_u
Variable height_u

float GLUE.BaseTexture.width_u
float GLUE.BaseTexture.height_u

Description

Utilization in percent.


Variable i_width
Variable i_height

int GLUE.BaseTexture.i_width
int GLUE.BaseTexture.i_height

Description

Image dimensions


Variable t_width
Variable t_height

int GLUE.BaseTexture.t_width
int GLUE.BaseTexture.t_height

Description

Texture dimensions


Variable texture_type

int GLUE.BaseTexture.texture_type

Description

The texture type, e.g. GL.GL_TEXTURE_2D.


Method _destruct

protected void _destruct()

Description

Properly deallocates the texture.


Method _sizeof

int sizeof( GLUE.BaseTexture arg )

Description

Returns the size of memory allocated by the texture.


Method `>

bool res = GLUE.BaseTexture() > x

Description

Textures can be sorted according to texture id.


Method clear

void clear()

Description

Clears the texture.


Method construct

void construct(int width, int height, int _alpha, mapping|void imgs, int(2bit)|void flags, int|void _mode, string|void debug_text)

Description

Construct a new texture. Processes _alpha, _mode and debug_text and calls resize.

Parameter _alpha

The alpha mode the texture is operating in.

0

RGB

1

RGBA

2

ALPHA

3

LUM

4

LUM+ALPHA

Parameter _mode

The mode the texture is operating in. Autoselected wrt _alpha if 0.

Parameter debug_text

A string that can be used to identify this texture.


Method coords

void coords(float x, float y)

Description

Sets the texture coordinates to x*width,y*height.


Method create

GLUE.BaseTexture GLUE.BaseTexture(mixed ... args)

Description

Calls construct with args.


Method create_texture

void create_texture(mapping|void imgs, int(2bit)|void flags, int|void width, int|void height)

Description

Actually creates the texture.

Parameter imgs

If zero, a black texture with the dimensions width * height will be generated. Otherwise imgs should be a mapping as follows.

"image" : Image.Image

The actual image to be used as texture. It will be cropped/padded to meet the dimensions given in width and height.

"alpha" : Image.Image

Optional image to be used as alpha channel, depending on the alpha value given to create/construct.

Parameter flags

If 1, the texture will be mipmapped. If bit 1 (2) is set, texture will not be wrapped but clamped.

Parameter width
Parameter height

The dimensions of the texture. If omitted the dimensions of the images in imgs will be used.

See also

resize


Method draw

void draw(float x, float y, float z, float w, float h)

Description

Draw the texture at x,y,z with dimensions w*h.


Method draw_region

void draw_region(float x, float y, float z, float w, float h, float s0, float q0, float ss, float qs)

Description

Draw texture region s0,q0 - ss,qs at x,y,z with dimensions w*h.


Method get_id

int get_id()

Description

Returns the id of this texture.


Method make_mipmap

void make_mipmap(mapping imgs, int|void imode, int|void dx, int|void dy)

Description

Renders a mipmap of the image/partial image imgs.

Parameter imgs

Image data mapping to feed GL.glTexImage2D or GL.glTexSubImage2D.

Parameter imode

Internal format to feed GL.glTexImage2D, or UNDEFINED for partial images.

Parameter dx
Parameter dy

Xoffs, yoffs to feed GL.glTexSubImage2D for partial images.

See also

create_texture


Method paste

void paste(zero|Image.Image i, Image.Image a, int x, int y)

Description

Paste the image i with alpha channel a at coordinates x and y in the current texture.


Method resize

void resize(int width, int height, mapping|void imgs, int(2bit)|void flags, bool|void nocreate)

Description

Resizes/creates a texture to meet the dimensions width and height. If nocreate isn't given, create_texture is called to actually perform the resize/creation.

See also

construct


Method set_image_data

void set_image_data(Image.Image|mapping(string:mixed) data, bool|void no_resize)

Description

Set the contents (and size) of the texture from the supplied data. The data is identical to what would normally be sent as the last argument to glTex[Sub]Image2D() or an Image.Image object.

If no_resize is specified, it is assumed that the data will fit in the texture, otherwise the parts that extend beyond it will be discarded.

Parameter data

Besides being an Image.Image object, data can be either of two types of mappins. First it can be a mapping with Image data.

"rgb" : Image.Image

Texture image data.

"alpha" : Image.Image

Optional alpha channel.

"luminance" : Image.Image

Optional luminance channel.

Second it can be a mapping pointing out a shared memory segment.

"mem" : System.Memory

The shared memory segment.

"mem_w" : int

The width and height of the memory segment.

"mem_h" : int
"mem_format" : int

The format of the memory segment, e.g. GL.GL_RGB.

"mem_type" : int

The low level format of the memory segment, e.g. GL.GL_UNSIGNED_BYTE.


Method use

void use()

Description

Use the generated texture (GL.glBindTexture).

Class GLUE.DynList

Description

A displaylist that is generated on demand.

Note

On Windows lists needs to be regenerated when the video driver mode is changed. Thus the DynList is to prefer over List, since regeneration is done automatically upon video mode change.


Inherit List

inherit List : List


Method call

void call()

Description

Call the displaylist, ie draw it.


Method create

GLUE.DynList GLUE.DynList(function(:void)|void f)

Description

Create a new DynList object and optionally set a function that can generate the displaylist

Parameter f

Function which contains the GL commands that generates the displaylist.


Method init

void init()

Description

Generates the displaylist, ie calls the function set in set_generator. Called only when the display list needs to be generated.


Method modeswitch

void modeswitch()

Description

Called by videodriver when a video mode change occurs.


Method set_generator

void set_generator(function(:void) _generator)

Description

Sets a function which can generate a displaylist. Hint: Use implicit lambda...

Class GLUE.Font

Description

A font.


Method create

GLUE.Font GLUE.Font(Image.Fonts.Font font, float|void scale_width, float|void scale_spacing)


Method get_character

array(int|BaseTexture|Region) get_character(int c)

Description

Returns the advance (in pixels), the texture and the texture coordinates for the specified character, or 0 if it's nonprintable.

Note

If the font->write call fails, the backtrace will be written to stderr.


Method text_extents

array(float) text_extents(string text, float h)

Description

Get the width and height of the area that the string text in size h would cover.


Method write

array(List|float) write(string text, float h, void|float|Region roi, string|void align)

Description

Create a display list that writes text.

Parameter text

The text to write.

Parameter h

The font height

Parameter roi

The region, if supplied, to restrict writing to.

Parameter align

The text justification; "left" (default), "center" or "right".


Method write_now

array(float) write_now(string text, float h, void|float|Region roi, string|void align)

Description

Write the text in size [h], possibly restricted by region roi. Return the width and height of the resulting text area. If roi is a float, Region(0.0, 0.0, roi, 10000.0) will be used.

Class GLUE.Font.Character

Description

A character to draw.


Inherit Region

inherit Region : Region


Variable pos

Region GLUE.Font.Character.pos

Description

Character position in texture txt.


Variable slice

Region GLUE.Font.Character.slice

Description

Slice of character to be shown.


Variable txt

BaseTexture GLUE.Font.Character.txt

Description

Texture holding the character.


Method draw

void draw()

Description

Draw the character using the texture txt with the texture-coordinates indicated in pos, possible cropped with slice.


Method set_data

void set_data(Region _pos, BaseTexture _txt, void|Region _slice)

Description

Set character to be region _slice of region _pos of texture _txt.

Class GLUE.Font.GAH


Variable q
Variable text
Variable h
Variable roi
Variable align

object GLUE.Font.GAH.q
string GLUE.Font.GAH.text
float GLUE.Font.GAH.h
float|object GLUE.Font.GAH.roi
string|void GLUE.Font.GAH.align


Method __create__

protected local void __create__(object q, string text, float h, float|object roi, string|void align)


Method create

GLUE.Font.GAH GLUE.Font.GAH(object q, string text, float h, float|object roi, string|void align)

Class GLUE.List

Description

A display list abstraction. Automatically allocates a display list id upon creation and correctly deallocate it upon destruction.

See also

DynList


Method _destruct

protected void _destruct()

Description

Deletes this list and frees the list id from the id pool.


Method `>

bool res = GLUE.List() > x

Description

List objects can be sorted according to list id.

See also

get_id


Method begin

void begin(bool|void run)

Description

Start defining the list. If run is provided, the list will be executed as it is compiled (GL.GL_COMPILE_AND_EXECUTE).

See also

end, compile


Method call

void call()

Description

Execute the commands in the list.


Method compile

void compile(function(:void) f)

Description

Compile a list be executing the list code f. Exceptions in f will be thrown after GL.glEndList has been called.

See also

begin


Method create

GLUE.List GLUE.List(void|function(:void) f)

Description

When creating a new list, the list code can be compiled upon creation by supplying a function f that performs the GL operations.

See also

call

Example

List list = List() { // GL code };


Method end

void end()

Description

Finish the list definition.

See also

begin, compile


Method get_id

int get_id()

Description

Returns this lists' id.

Class GLUE.RectangleDWIMTexture

Description

Convenience version of the RectangleTexture class.


Inherit BaseDWIM

inherit BaseDWIM : BaseDWIM

Description

Convenience methods


Inherit RectangleTexture

inherit RectangleTexture : RectangleTexture

Description

Texture base

Class GLUE.RectangleTexture

Description

Uses the NVidia RECT texture extension for non-power-of-two textures.


Inherit BaseTexture

inherit BaseTexture : BaseTexture

Class GLUE.Region

Description

A rectangle. Used by the text routines to avoid drawing outside the current region.


Constant is_region

constant int GLUE.Region.is_region

Description

All region objects have this constant.


Variable x
Variable y
Variable w
Variable h

float GLUE.Region.x
float GLUE.Region.y
float GLUE.Region.w
float GLUE.Region.h


Method __create__

protected local void __create__(float x, float y, float w, float h)


Method `&

Region res = GLUE.Region() & R

Description

Creates a new region with the intersection of this region and R.


Method create

GLUE.Region GLUE.Region(float x, float y, float w, float h)


Method inside

bool inside(Region R)

Description

Returns 1 if the region R is fully inside this region.


Method move

void move(float xp, float yp)

Description

Move the region xp units right and yp units down.


Method outside

bool outside(Region R)

Description

Returns 1 if the region R is fully outside this region.


Method resize

void resize(float xs, float ys)

Description

Make the region xs units wider and ys units higher.

Class GLUE.SquareMesh

Description

A mesh of squares.


Method create

GLUE.SquareMesh GLUE.SquareMesh(function(float, float:Math.Matrix) calculator)

Description

The calculator will be called for each corner and should return a 1x3 matrix describing the coordinates for the given spot om the surface.


Method draw

void draw()

Description

Draw the mesh.


Method recalculate

void recalculate()

Description

Recalculate the mesh.


Method set_lighting

void set_lighting(bool do_lighting)

Description

Indicate whether or not lighting is used. If it is, the normals of each vertex will be calculated as well as the coordinates.


Method set_size

void set_size(int x, int y)

Description

Set the size of the mesh


Method set_texture

void set_texture(BaseTexture tex)

Description

Set a texture to be mapped on the mesh.


Method surface_normal

Math.Matrix surface_normal(int x, int y)

Description

Return the normal for the surface at coordinates x,y. Used internally.

Class GLUE.Texture

Description

Convenience version of the Texture class.


Inherit BaseDWIM

inherit BaseDWIM : BaseDWIM

Description

Convenience methods


Inherit BaseTexture

inherit BaseTexture : BaseTexture

Description

Texture base

Module GLUE.Events

Description

GLUE Event abstraction.


Constant BACKSPACE
Constant DELETE
Constant TAB
Constant F1
Constant F2
Constant F3
Constant F4
Constant F5
Constant F6
Constant F7
Constant F8
Constant F9
Constant F10
Constant F11
Constant F12
Constant ESCAPE
Constant UP
Constant DOWN
Constant LEFT
Constant RIGHT
Constant PGUP
Constant PGDWN
Constant ENTER
Constant SPACE
Constant HOME
Constant END
Constant PAUSE
Constant INSERT
Constant SCROLL_LOCK
Constant SYS_REQ
Constant PRINT_SCRN
Constant CAPSLOCK
Constant MENU
Constant NUMLOCK
Constant A
Constant B
Constant C
Constant D
Constant E
Constant F
Constant G
Constant H
Constant I
Constant J
Constant K
Constant L
Constant M
Constant N
Constant O
Constant P
Constant Q
Constant R
Constant S
Constant T
Constant U
Constant V
Constant W
Constant X
Constant Y
Constant Z

constant int GLUE.Events.BACKSPACE
constant int GLUE.Events.DELETE
constant int GLUE.Events.TAB
constant int GLUE.Events.F1
constant GLUE.Events.F2
constant GLUE.Events.F3
constant GLUE.Events.F4
constant GLUE.Events.F5
constant GLUE.Events.F6
constant GLUE.Events.F7
constant GLUE.Events.F8
constant GLUE.Events.F9
constant GLUE.Events.F10
constant GLUE.Events.F11
constant GLUE.Events.F12
constant int GLUE.Events.ESCAPE
constant int GLUE.Events.UP
constant int GLUE.Events.DOWN
constant int GLUE.Events.LEFT
constant int GLUE.Events.RIGHT
constant int GLUE.Events.PGUP
constant int GLUE.Events.PGDWN
constant int GLUE.Events.ENTER
constant int GLUE.Events.SPACE
constant int GLUE.Events.HOME
constant int GLUE.Events.END
constant int GLUE.Events.PAUSE
constant int GLUE.Events.INSERT
constant int GLUE.Events.SCROLL_LOCK
constant int GLUE.Events.SYS_REQ
constant int GLUE.Events.PRINT_SCRN
constant int GLUE.Events.CAPSLOCK
constant int GLUE.Events.MENU
constant int GLUE.Events.NUMLOCK
constant int GLUE.Events.A
constant int GLUE.Events.B
constant int GLUE.Events.C
constant int GLUE.Events.D
constant int GLUE.Events.E
constant int GLUE.Events.F
constant int GLUE.Events.G
constant int GLUE.Events.H
constant int GLUE.Events.I
constant int GLUE.Events.J
constant int GLUE.Events.K
constant int GLUE.Events.L
constant int GLUE.Events.M
constant int GLUE.Events.N
constant int GLUE.Events.O
constant int GLUE.Events.P
constant int GLUE.Events.Q
constant int GLUE.Events.R
constant int GLUE.Events.S
constant int GLUE.Events.T
constant int GLUE.Events.U
constant int GLUE.Events.V
constant int GLUE.Events.W
constant int GLUE.Events.X
constant int GLUE.Events.Y
constant int GLUE.Events.Z

Description

Numeric constant representing a key.


Constant BUTTON_1
Constant BUTTON_2
Constant BUTTON_3
Constant BUTTON_4
Constant BUTTON_5

constant int GLUE.Events.BUTTON_1
constant int GLUE.Events.BUTTON_2
constant int GLUE.Events.BUTTON_3
constant int GLUE.Events.BUTTON_4
constant int GLUE.Events.BUTTON_5

Description

Numeric constant representing a mouse button.


Constant EXIT

constant int GLUE.Events.EXIT

Description

Numeric constant representing an exit event.


Constant KNOWN_MODIFIERS

constant GLUE.Events.KNOWN_MODIFIERS

Description

Integer constant with the union of all known modifiers, i.e. _SHFT | _CTRL | _ALT.


Constant LSHIFT
Constant RSHIFT
Constant LCTRL
Constant RCTRL
Constant LALT
Constant RALT

constant int GLUE.Events.LSHIFT
constant int GLUE.Events.RSHIFT
constant int GLUE.Events.LCTRL
constant int GLUE.Events.RCTRL
constant int GLUE.Events.LALT
constant int GLUE.Events.RALT

Description

Numeric constant representing a modifier key.


Constant MODIFIERS

constant GLUE.Events.MODIFIERS

Description

Mapping that maps a modifier key to any of the symbolic modifiers _SHFT, _CTRL and _ALT.


Constant MOUSE_UP
Constant MOUSE_DOWN
Constant MOUSE_LEFT
Constant MOUSE_RIGHT
Constant MOUSE_ABS

constant int GLUE.Events.MOUSE_UP
constant int GLUE.Events.MOUSE_DOWN
constant int GLUE.Events.MOUSE_LEFT
constant int GLUE.Events.MOUSE_RIGHT
constant int GLUE.Events.MOUSE_ABS

Description

Numeric constant representing a mouse movement.


Constant _ALT

constant int GLUE.Events._ALT

Description

Integer constant representing alternate.


Constant _CTRL

constant int GLUE.Events._CTRL

Description

Integer constant representing control.


Constant _SHFT

constant int GLUE.Events._SHFT

Description

Integer constant representing shift.


Constant key_names

constant GLUE.Events.key_names

Description

Mapping that maps key identifiers with a printable name, e.g. LSHIFT to "Left shift".


Method ALT

Event ALT(int|Event X)
array(Event) ALT(array(int|Event) X)

Description

Adds the _ALT modifier to an Event, key or array of Events and/or keys.


Method CTRL

Event CTRL(int|Event X)
array(Event) CTRL(array(int|Event) X)

Description

Adds the _CTRL modifier to an Event, key or array of Events and/or keys.


Method SHFT

Event SHFT(int|Event X)
array(Event) SHFT(array(int|Event) X)

Description

Adds the _SHFT modifier to an Event, key or array of Events and/or keys.


Method is_modifier

bool is_modifier(int k)

Description

Returns 1 if the key code k is a modifier key, e.g. LSHIFT or RSHIFT.

Class GLUE.Events.Event

Description

Contains an event.


Variable press

bool GLUE.Events.Event.press

Description

Press event or release event.


Variable pressure

float GLUE.Events.Event.pressure

Description

The pressure of the key stroke. A value between 0.0 and 1.0. Unknown values are represented as 0.


Method create

GLUE.Events.Event GLUE.Events.Event(int|void _key, bool|void _press, string|void _data, int|void _modifiers, float|void pressure)


Method dup

this_program dup()

Description

Returns a copy of this Event object.

Module GLUT


Constant GLUT_ACCUM

constant GLUT.GLUT_ACCUM


Constant GLUT_ACTIVE_ALT

constant GLUT.GLUT_ACTIVE_ALT


Constant GLUT_ACTIVE_CTRL

constant GLUT.GLUT_ACTIVE_CTRL


Constant GLUT_ACTIVE_SHIFT

constant GLUT.GLUT_ACTIVE_SHIFT


Constant GLUT_ALPHA

constant GLUT.GLUT_ALPHA


Constant GLUT_BLUE

constant GLUT.GLUT_BLUE


Constant GLUT_CURSOR_BOTTOM_LEFT_CORNER

constant GLUT.GLUT_CURSOR_BOTTOM_LEFT_CORNER


Constant GLUT_CURSOR_BOTTOM_RIGHT_CORNER

constant GLUT.GLUT_CURSOR_BOTTOM_RIGHT_CORNER


Constant GLUT_CURSOR_BOTTOM_SIDE

constant GLUT.GLUT_CURSOR_BOTTOM_SIDE


Constant GLUT_CURSOR_CROSSHAIR

constant GLUT.GLUT_CURSOR_CROSSHAIR


Constant GLUT_CURSOR_CYCLE

constant GLUT.GLUT_CURSOR_CYCLE


Constant GLUT_CURSOR_DESTROY

constant GLUT.GLUT_CURSOR_DESTROY


Constant GLUT_CURSOR_FULL_CROSSHAIR

constant GLUT.GLUT_CURSOR_FULL_CROSSHAIR


Constant GLUT_CURSOR_HELP

constant GLUT.GLUT_CURSOR_HELP


Constant GLUT_CURSOR_INFO

constant GLUT.GLUT_CURSOR_INFO


Constant GLUT_CURSOR_INHERIT

constant GLUT.GLUT_CURSOR_INHERIT


Constant GLUT_CURSOR_LEFT_ARROW

constant GLUT.GLUT_CURSOR_LEFT_ARROW


Constant GLUT_CURSOR_LEFT_RIGHT

constant GLUT.GLUT_CURSOR_LEFT_RIGHT


Constant GLUT_CURSOR_LEFT_SIDE

constant GLUT.GLUT_CURSOR_LEFT_SIDE


Constant GLUT_CURSOR_NONE

constant GLUT.GLUT_CURSOR_NONE


Constant GLUT_CURSOR_RIGHT_ARROW

constant GLUT.GLUT_CURSOR_RIGHT_ARROW


Constant GLUT_CURSOR_RIGHT_SIDE

constant GLUT.GLUT_CURSOR_RIGHT_SIDE


Constant GLUT_CURSOR_SPRAY

constant GLUT.GLUT_CURSOR_SPRAY


Constant GLUT_CURSOR_TEXT

constant GLUT.GLUT_CURSOR_TEXT


Constant GLUT_CURSOR_TOP_LEFT_CORNER

constant GLUT.GLUT_CURSOR_TOP_LEFT_CORNER


Constant GLUT_CURSOR_TOP_RIGHT_CORNER

constant GLUT.GLUT_CURSOR_TOP_RIGHT_CORNER


Constant GLUT_CURSOR_TOP_SIDE

constant GLUT.GLUT_CURSOR_TOP_SIDE


Constant GLUT_CURSOR_UP_DOWN

constant GLUT.GLUT_CURSOR_UP_DOWN


Constant GLUT_CURSOR_WAIT

constant GLUT.GLUT_CURSOR_WAIT


Constant GLUT_DEPTH

constant GLUT.GLUT_DEPTH


Constant GLUT_DEVICE_IGNORE_KEY_REPEAT

constant GLUT.GLUT_DEVICE_IGNORE_KEY_REPEAT


Constant GLUT_DEVICE_KEY_REPEAT

constant GLUT.GLUT_DEVICE_KEY_REPEAT


Constant GLUT_DISPLAY_MODE_POSSIBLE

constant GLUT.GLUT_DISPLAY_MODE_POSSIBLE


Constant GLUT_DOUBLE

constant GLUT.GLUT_DOUBLE


Constant GLUT_DOWN

constant GLUT.GLUT_DOWN


Constant GLUT_ELAPSED_TIME

constant GLUT.GLUT_ELAPSED_TIME


Constant GLUT_ENTERED

constant GLUT.GLUT_ENTERED


Constant GLUT_FULLY_COVERED

constant GLUT.GLUT_FULLY_COVERED


Constant GLUT_FULLY_RETAINED

constant GLUT.GLUT_FULLY_RETAINED


Constant GLUT_GAME_MODE_ACTIVE

constant GLUT.GLUT_GAME_MODE_ACTIVE


Constant GLUT_GAME_MODE_DISPLAY_CHANGED

constant GLUT.GLUT_GAME_MODE_DISPLAY_CHANGED


Constant GLUT_GAME_MODE_HEIGHT

constant GLUT.GLUT_GAME_MODE_HEIGHT


Constant GLUT_GAME_MODE_PIXEL_DEPTH

constant GLUT.GLUT_GAME_MODE_PIXEL_DEPTH


Constant GLUT_GAME_MODE_POSSIBLE

constant GLUT.GLUT_GAME_MODE_POSSIBLE


Constant GLUT_GAME_MODE_REFRESH_RATE

constant GLUT.GLUT_GAME_MODE_REFRESH_RATE


Constant GLUT_GAME_MODE_WIDTH

constant GLUT.GLUT_GAME_MODE_WIDTH


Constant GLUT_GREEN

constant GLUT.GLUT_GREEN


Constant GLUT_HAS_DIAL_AND_BUTTON_BOX

constant GLUT.GLUT_HAS_DIAL_AND_BUTTON_BOX


Constant GLUT_HAS_JOYSTICK

constant GLUT.GLUT_HAS_JOYSTICK


Constant GLUT_HAS_KEYBOARD

constant GLUT.GLUT_HAS_KEYBOARD


Constant GLUT_HAS_MOUSE

constant GLUT.GLUT_HAS_MOUSE


Constant GLUT_HAS_OVERLAY

constant GLUT.GLUT_HAS_OVERLAY


Constant GLUT_HAS_SPACEBALL

constant GLUT.GLUT_HAS_SPACEBALL


Constant GLUT_HAS_TABLET

constant GLUT.GLUT_HAS_TABLET


Constant GLUT_HIDDEN

constant GLUT.GLUT_HIDDEN


Constant GLUT_INDEX

constant GLUT.GLUT_INDEX


Constant GLUT_INIT_DISPLAY_MODE

constant GLUT.GLUT_INIT_DISPLAY_MODE


Constant GLUT_INIT_WINDOW_HEIGHT

constant GLUT.GLUT_INIT_WINDOW_HEIGHT


Constant GLUT_INIT_WINDOW_WIDTH

constant GLUT.GLUT_INIT_WINDOW_WIDTH


Constant GLUT_INIT_WINDOW_X

constant GLUT.GLUT_INIT_WINDOW_X


Constant GLUT_INIT_WINDOW_Y

constant GLUT.GLUT_INIT_WINDOW_Y


Constant GLUT_JOYSTICK_AXES

constant GLUT.GLUT_JOYSTICK_AXES


Constant GLUT_JOYSTICK_BUTTONS

constant GLUT.GLUT_JOYSTICK_BUTTONS


Constant GLUT_JOYSTICK_BUTTON_A

constant GLUT.GLUT_JOYSTICK_BUTTON_A


Constant GLUT_JOYSTICK_BUTTON_B

constant GLUT.GLUT_JOYSTICK_BUTTON_B


Constant GLUT_JOYSTICK_BUTTON_C

constant GLUT.GLUT_JOYSTICK_BUTTON_C


Constant GLUT_JOYSTICK_BUTTON_D

constant GLUT.GLUT_JOYSTICK_BUTTON_D


Constant GLUT_JOYSTICK_POLL_RATE

constant GLUT.GLUT_JOYSTICK_POLL_RATE


Constant GLUT_KEY_DOWN

constant GLUT.GLUT_KEY_DOWN


Constant GLUT_KEY_END

constant GLUT.GLUT_KEY_END


Constant GLUT_KEY_F1

constant GLUT.GLUT_KEY_F1


Constant GLUT_KEY_F10

constant GLUT.GLUT_KEY_F10


Constant GLUT_KEY_F11

constant GLUT.GLUT_KEY_F11


Constant GLUT_KEY_F12

constant GLUT.GLUT_KEY_F12


Constant GLUT_KEY_F2

constant GLUT.GLUT_KEY_F2


Constant GLUT_KEY_F3

constant GLUT.GLUT_KEY_F3


Constant GLUT_KEY_F4

constant GLUT.GLUT_KEY_F4


Constant GLUT_KEY_F5

constant GLUT.GLUT_KEY_F5


Constant GLUT_KEY_F6

constant GLUT.GLUT_KEY_F6


Constant GLUT_KEY_F7

constant GLUT.GLUT_KEY_F7


Constant GLUT_KEY_F8

constant GLUT.GLUT_KEY_F8


Constant GLUT_KEY_F9

constant GLUT.GLUT_KEY_F9


Constant GLUT_KEY_HOME

constant GLUT.GLUT_KEY_HOME


Constant GLUT_KEY_INSERT

constant GLUT.GLUT_KEY_INSERT


Constant GLUT_KEY_LEFT

constant GLUT.GLUT_KEY_LEFT


Constant GLUT_KEY_PAGE_DOWN

constant GLUT.GLUT_KEY_PAGE_DOWN


Constant GLUT_KEY_PAGE_UP

constant GLUT.GLUT_KEY_PAGE_UP


Constant GLUT_KEY_REPEAT_DEFAULT

constant GLUT.GLUT_KEY_REPEAT_DEFAULT


Constant GLUT_KEY_REPEAT_OFF

constant GLUT.GLUT_KEY_REPEAT_OFF


Constant GLUT_KEY_REPEAT_ON

constant GLUT.GLUT_KEY_REPEAT_ON


Constant GLUT_KEY_RIGHT

constant GLUT.GLUT_KEY_RIGHT


Constant GLUT_KEY_UP

constant GLUT.GLUT_KEY_UP


Constant GLUT_LAYER_IN_USE

constant GLUT.GLUT_LAYER_IN_USE


Constant GLUT_LEFT

constant GLUT.GLUT_LEFT


Constant GLUT_LEFT_BUTTON

constant GLUT.GLUT_LEFT_BUTTON


Constant GLUT_LUMINANCE

constant GLUT.GLUT_LUMINANCE


Constant GLUT_MENU_IN_USE

constant GLUT.GLUT_MENU_IN_USE


Constant GLUT_MENU_NOT_IN_USE

constant GLUT.GLUT_MENU_NOT_IN_USE


Constant GLUT_MENU_NUM_ITEMS

constant GLUT.GLUT_MENU_NUM_ITEMS


Constant GLUT_MIDDLE_BUTTON

constant GLUT.GLUT_MIDDLE_BUTTON


Constant GLUT_MULTISAMPLE

constant GLUT.GLUT_MULTISAMPLE


Constant GLUT_NORMAL

constant GLUT.GLUT_NORMAL


Constant GLUT_NORMAL_DAMAGED

constant GLUT.GLUT_NORMAL_DAMAGED


Constant GLUT_NOT_VISIBLE

constant GLUT.GLUT_NOT_VISIBLE


Constant GLUT_NUM_BUTTON_BOX_BUTTONS

constant GLUT.GLUT_NUM_BUTTON_BOX_BUTTONS


Constant GLUT_NUM_DIALS

constant GLUT.GLUT_NUM_DIALS


Constant GLUT_NUM_MOUSE_BUTTONS

constant GLUT.GLUT_NUM_MOUSE_BUTTONS


Constant GLUT_NUM_SPACEBALL_BUTTONS

constant GLUT.GLUT_NUM_SPACEBALL_BUTTONS


Constant GLUT_NUM_TABLET_BUTTONS

constant GLUT.GLUT_NUM_TABLET_BUTTONS


Constant GLUT_OVERLAY

constant GLUT.GLUT_OVERLAY


Constant GLUT_OVERLAY_DAMAGED

constant GLUT.GLUT_OVERLAY_DAMAGED


Constant GLUT_OVERLAY_POSSIBLE

constant GLUT.GLUT_OVERLAY_POSSIBLE


Constant GLUT_OWNS_JOYSTICK

constant GLUT.GLUT_OWNS_JOYSTICK


Constant GLUT_PARTIALLY_RETAINED

constant GLUT.GLUT_PARTIALLY_RETAINED


Constant GLUT_RED

constant GLUT.GLUT_RED


Constant GLUT_RGB

constant GLUT.GLUT_RGB


Constant GLUT_RGBA

constant GLUT.GLUT_RGBA


Constant GLUT_RIGHT_BUTTON

constant GLUT.GLUT_RIGHT_BUTTON


Constant GLUT_SCREEN_HEIGHT

constant GLUT.GLUT_SCREEN_HEIGHT


Constant GLUT_SCREEN_HEIGHT_MM

constant GLUT.GLUT_SCREEN_HEIGHT_MM


Constant GLUT_SCREEN_WIDTH

constant GLUT.GLUT_SCREEN_WIDTH


Constant GLUT_SCREEN_WIDTH_MM

constant GLUT.GLUT_SCREEN_WIDTH_MM


Constant GLUT_SINGLE

constant GLUT.GLUT_SINGLE


Constant GLUT_STENCIL

constant GLUT.GLUT_STENCIL


Constant GLUT_STEREO

constant GLUT.GLUT_STEREO


Constant GLUT_TRANSPARENT_INDEX

constant GLUT.GLUT_TRANSPARENT_INDEX


Constant GLUT_UP

constant GLUT.GLUT_UP


Constant GLUT_VIDEO_RESIZE_HEIGHT

constant GLUT.GLUT_VIDEO_RESIZE_HEIGHT


Constant GLUT_VIDEO_RESIZE_HEIGHT_DELTA

constant GLUT.GLUT_VIDEO_RESIZE_HEIGHT_DELTA


Constant GLUT_VIDEO_RESIZE_IN_USE

constant GLUT.GLUT_VIDEO_RESIZE_IN_USE


Constant GLUT_VIDEO_RESIZE_POSSIBLE

constant GLUT.GLUT_VIDEO_RESIZE_POSSIBLE


Constant GLUT_VIDEO_RESIZE_WIDTH

constant GLUT.GLUT_VIDEO_RESIZE_WIDTH


Constant GLUT_VIDEO_RESIZE_WIDTH_DELTA

constant GLUT.GLUT_VIDEO_RESIZE_WIDTH_DELTA


Constant GLUT_VIDEO_RESIZE_X

constant GLUT.GLUT_VIDEO_RESIZE_X


Constant GLUT_VIDEO_RESIZE_X_DELTA

constant GLUT.GLUT_VIDEO_RESIZE_X_DELTA


Constant GLUT_VIDEO_RESIZE_Y

constant GLUT.GLUT_VIDEO_RESIZE_Y


Constant GLUT_VIDEO_RESIZE_Y_DELTA

constant GLUT.GLUT_VIDEO_RESIZE_Y_DELTA


Constant GLUT_VISIBLE

constant GLUT.GLUT_VISIBLE


Constant GLUT_WINDOW_ACCUM_ALPHA_SIZE

constant GLUT.GLUT_WINDOW_ACCUM_ALPHA_SIZE


Constant GLUT_WINDOW_ACCUM_BLUE_SIZE

constant GLUT.GLUT_WINDOW_ACCUM_BLUE_SIZE


Constant GLUT_WINDOW_ACCUM_GREEN_SIZE

constant GLUT.GLUT_WINDOW_ACCUM_GREEN_SIZE


Constant GLUT_WINDOW_ACCUM_RED_SIZE

constant GLUT.GLUT_WINDOW_ACCUM_RED_SIZE


Constant GLUT_WINDOW_ALPHA_SIZE

constant GLUT.GLUT_WINDOW_ALPHA_SIZE


Constant GLUT_WINDOW_BLUE_SIZE

constant GLUT.GLUT_WINDOW_BLUE_SIZE


Constant GLUT_WINDOW_BUFFER_SIZE

constant GLUT.GLUT_WINDOW_BUFFER_SIZE


Constant GLUT_WINDOW_COLORMAP_SIZE

constant GLUT.GLUT_WINDOW_COLORMAP_SIZE


Constant GLUT_WINDOW_CURSOR

constant GLUT.GLUT_WINDOW_CURSOR


Constant GLUT_WINDOW_DEPTH_SIZE

constant GLUT.GLUT_WINDOW_DEPTH_SIZE


Constant GLUT_WINDOW_DOUBLEBUFFER

constant GLUT.GLUT_WINDOW_DOUBLEBUFFER


Constant GLUT_WINDOW_FORMAT_ID

constant GLUT.GLUT_WINDOW_FORMAT_ID


Constant GLUT_WINDOW_GREEN_SIZE

constant GLUT.GLUT_WINDOW_GREEN_SIZE


Constant GLUT_WINDOW_HEIGHT

constant GLUT.GLUT_WINDOW_HEIGHT


Constant GLUT_WINDOW_NUM_CHILDREN

constant GLUT.GLUT_WINDOW_NUM_CHILDREN


Constant GLUT_WINDOW_NUM_SAMPLES

constant GLUT.GLUT_WINDOW_NUM_SAMPLES


Constant GLUT_WINDOW_PARENT

constant GLUT.GLUT_WINDOW_PARENT


Constant GLUT_WINDOW_RED_SIZE

constant GLUT.GLUT_WINDOW_RED_SIZE


Constant GLUT_WINDOW_RGBA

constant GLUT.GLUT_WINDOW_RGBA


Constant GLUT_WINDOW_STENCIL_SIZE

constant GLUT.GLUT_WINDOW_STENCIL_SIZE


Constant GLUT_WINDOW_STEREO

constant GLUT.GLUT_WINDOW_STEREO


Constant GLUT_WINDOW_WIDTH

constant GLUT.GLUT_WINDOW_WIDTH


Constant GLUT_WINDOW_X

constant GLUT.GLUT_WINDOW_X


Constant GLUT_WINDOW_Y

constant GLUT.GLUT_WINDOW_Y


Method glutAddMenuEntry

void glutAddMenuEntry(string, int)


Method glutAddSubMenu

void glutAddSubMenu(string, int)


Method glutAttachMenu

void glutAttachMenu(int)


Method glutButtonBoxFunc

void glutButtonBoxFunc(function(:void))


Method glutChangeToMenuEntry

void glutChangeToMenuEntry(int, string, int)


Method glutChangeToSubMenu

void glutChangeToSubMenu(int, string, int)


Method glutCopyColormap

void glutCopyColormap(int)


Method glutCreateMenu

int glutCreateMenu(function(:void))


Method glutCreateSubWindow

int glutCreateSubWindow(int, int, int, int, int)


Method glutCreateWindow

int glutCreateWindow(string)


Method glutDestroyMenu

void glutDestroyMenu(int)


Method glutDestroyWindow

void glutDestroyWindow(int)


Method glutDetachMenu

void glutDetachMenu(int)


Method glutDeviceGet

int glutDeviceGet(int)


Method glutDialsFunc

void glutDialsFunc(function(:void))


Method glutDisplayFunc

void glutDisplayFunc(function(:void))


Method glutEnterGameMode

int glutEnterGameMode()


Method glutEntryFunc

void glutEntryFunc(function(:void))


Method glutEstablishOverlay

void glutEstablishOverlay()


Method glutExtensionSupported

int glutExtensionSupported(string)


Method glutForceJoystickFunc

void glutForceJoystickFunc()


Method glutFullScreen

void glutFullScreen()


Method glutGameModeGet

int glutGameModeGet(int)


Method glutGameModeString

void glutGameModeString(string)


Method glutGet

int glutGet(int)


Method glutGetColor

float glutGetColor(int, int)


Method glutGetMenu

int glutGetMenu()


Method glutGetModifiers

int glutGetModifiers()


Method glutGetWindow

int glutGetWindow()


Method glutHideOverlay

void glutHideOverlay()


Method glutHideWindow

void glutHideWindow()


Method glutIconifyWindow

void glutIconifyWindow()


Method glutIdleFunc

void glutIdleFunc(function(:void))


Method glutIgnoreKeyRepeat

void glutIgnoreKeyRepeat(int)


Method glutInitDisplayMode

void glutInitDisplayMode(int)


Method glutInitDisplayString

void glutInitDisplayString(string)


Method glutInitWindowPosition

void glutInitWindowPosition(int, int)


Method glutInitWindowSize

void glutInitWindowSize(int, int)


Method glutJoystickFunc

void glutJoystickFunc(function(:void), int)


Method glutKeyboardFunc

void glutKeyboardFunc(function(:void))


Method glutKeyboardUpFunc

void glutKeyboardUpFunc(function(:void))


Method glutLayerGet

int glutLayerGet(int)


Method glutLeaveGameMode

void glutLeaveGameMode()


Method glutMainLoop

void glutMainLoop()


Method glutMenuStateFunc

void glutMenuStateFunc(function(:void))


Method glutMenuStatusFunc

void glutMenuStatusFunc(function(:void))


Method glutMotionFunc

void glutMotionFunc(function(:void))


Method glutMouseFunc

void glutMouseFunc(function(:void))


Method glutOverlayDisplayFunc

void glutOverlayDisplayFunc(function(:void))


Method glutPassiveMotionFunc

void glutPassiveMotionFunc(function(:void))


Method glutPopWindow

void glutPopWindow()


Method glutPositionWindow

void glutPositionWindow(int, int)


Method glutPostOverlayRedisplay

void glutPostOverlayRedisplay()


Method glutPostRedisplay

void glutPostRedisplay()


Method glutPostWindowOverlayRedisplay

void glutPostWindowOverlayRedisplay(int)


Method glutPostWindowRedisplay

void glutPostWindowRedisplay(int)


Method glutPushWindow

void glutPushWindow()


Method glutRemoveMenuItem

void glutRemoveMenuItem(int)


Method glutRemoveOverlay

void glutRemoveOverlay()


Method glutReportErrors

void glutReportErrors()


Method glutReshapeFunc

void glutReshapeFunc(function(:void))


Method glutReshapeWindow

void glutReshapeWindow(int, int)


Method glutSetColor

void glutSetColor(int, float, float, float)


Method glutSetCursor

void glutSetCursor(int)


Method glutSetIconTitle

void glutSetIconTitle(string)


Method glutSetKeyRepeat

void glutSetKeyRepeat(int)


Method glutSetMenu

void glutSetMenu(int)


Method glutSetWindow

void glutSetWindow(int)


Method glutSetWindowTitle

void glutSetWindowTitle(string)


Method glutSetupVideoResizing

void glutSetupVideoResizing()


Method glutShowOverlay

void glutShowOverlay()


Method glutShowWindow

void glutShowWindow()


Method glutSolidCone

void glutSolidCone(float, float, int, int)


Method glutSolidCube

void glutSolidCube(float)


Method glutSolidDodecahedron

void glutSolidDodecahedron()


Method glutSolidIcosahedron

void glutSolidIcosahedron()


Method glutSolidOctahedron

void glutSolidOctahedron()


Method glutSolidSphere

void glutSolidSphere(float, int, int)


Method glutSolidTeapot

void glutSolidTeapot(float)


Method glutSolidTetrahedron

void glutSolidTetrahedron()


Method glutSolidTorus

void glutSolidTorus(float, float, int, int)


Method glutSpaceballButtonFunc

void glutSpaceballButtonFunc(function(:void))


Method glutSpaceballMotionFunc

void glutSpaceballMotionFunc(function(:void))


Method glutSpaceballRotateFunc

void glutSpaceballRotateFunc(function(:void))


Method glutSpecialFunc

void glutSpecialFunc(function(:void))


Method glutSpecialUpFunc

void glutSpecialUpFunc(function(:void))


Method glutStopVideoResizing

void glutStopVideoResizing()


Method glutSwapBuffers

void glutSwapBuffers()


Method glutTabletButtonFunc

void glutTabletButtonFunc(function(:void))


Method glutTabletMotionFunc

void glutTabletMotionFunc(function(:void))


Method glutTimerFunc

void glutTimerFunc(int, function(:void), int)


Method glutUseLayer

void glutUseLayer(int)


Method glutVideoPan

void glutVideoPan(int, int, int, int)


Method glutVideoResize

void glutVideoResize(int, int, int, int)


Method glutVideoResizeGet

int glutVideoResizeGet(int)


Method glutVisibilityFunc

void glutVisibilityFunc(function(:void))


Method glutWarpPointer

void glutWarpPointer(int, int)


Method glutWindowStatusFunc

void glutWindowStatusFunc(function(:void))


Method glutWireCone

void glutWireCone(float, float, int, int)


Method glutWireCube

void glutWireCube(float)


Method glutWireDodecahedron

void glutWireDodecahedron()


Method glutWireIcosahedron

void glutWireIcosahedron()


Method glutWireOctahedron

void glutWireOctahedron()


Method glutWireSphere

void glutWireSphere(float, int, int)


Method glutWireTeapot

void glutWireTeapot(float)


Method glutWireTetrahedron

void glutWireTetrahedron()


Method glutWireTorus

void glutWireTorus(float, float, int, int)

Module GLSL

Description

Low-level functions needed to do 'modern' OpenGL rendering.

You probably want to start by looking at the GLSLUtils module, or the examples included in the module.


Constant GLSL_FLOAT_SIZE

constant GLSL.GLSL_FLOAT_SIZE


Constant GL_ALPHA16F_ARB

constant GLSL.GL_ALPHA16F_ARB


Constant GL_ALPHA32F_ARB

constant GLSL.GL_ALPHA32F_ARB


Constant GL_ARRAY_BUFFER

constant GLSL.GL_ARRAY_BUFFER


Constant GL_ARRAY_BUFFER_BINDING

constant GLSL.GL_ARRAY_BUFFER_BINDING


Constant GL_COLOR_ARRAY

constant GLSL.GL_COLOR_ARRAY


Constant GL_COLOR_ARRAY_BUFFER_BINDING

constant GLSL.GL_COLOR_ARRAY_BUFFER_BINDING


Constant GL_COLOR_ATTACHMENT0_EXT

constant GLSL.GL_COLOR_ATTACHMENT0_EXT


Constant GL_COLOR_ATTACHMENT1_EXT

constant GLSL.GL_COLOR_ATTACHMENT1_EXT


Constant GL_COLOR_ATTACHMENT2_EXT

constant GLSL.GL_COLOR_ATTACHMENT2_EXT


Constant GL_COLOR_ATTACHMENT3_EXT

constant GLSL.GL_COLOR_ATTACHMENT3_EXT


Constant GL_COLOR_ATTACHMENT4_EXT

constant GLSL.GL_COLOR_ATTACHMENT4_EXT


Constant GL_DEPTH_ATTACHMENT_EXT

constant GLSL.GL_DEPTH_ATTACHMENT_EXT


Constant GL_DEPTH_CLAMP_NV

constant GLSL.GL_DEPTH_CLAMP_NV


Constant GL_DEPTH_COMPONENT

constant GLSL.GL_DEPTH_COMPONENT


Constant GL_DEPTH_COMPONENT16

constant GLSL.GL_DEPTH_COMPONENT16


Constant GL_DEPTH_COMPONENT24

constant GLSL.GL_DEPTH_COMPONENT24


Constant GL_DEPTH_COMPONENT32

constant GLSL.GL_DEPTH_COMPONENT32


Constant GL_DRAW_FRAMEBUFFER_EXT

constant GLSL.GL_DRAW_FRAMEBUFFER_EXT


Constant GL_DYNAMIC_COPY

constant GLSL.GL_DYNAMIC_COPY


Constant GL_DYNAMIC_DRAW

constant GLSL.GL_DYNAMIC_DRAW


Constant GL_DYNAMIC_READ

constant GLSL.GL_DYNAMIC_READ


Constant GL_EDGE_FLAG_ARRAY

constant GLSL.GL_EDGE_FLAG_ARRAY


Constant GL_EDGE_FLAG_ARRAY_BUFFER_BINDING

constant GLSL.GL_EDGE_FLAG_ARRAY_BUFFER_BINDING


Constant GL_ELEMENT_ARRAY_BUFFER

constant GLSL.GL_ELEMENT_ARRAY_BUFFER


Constant GL_ELEMENT_ARRAY_BUFFER_BINDING

constant GLSL.GL_ELEMENT_ARRAY_BUFFER_BINDING


Constant GL_FOG_COORDINATE_ARRAY_BUFFER_BINDING

constant GLSL.GL_FOG_COORDINATE_ARRAY_BUFFER_BINDING


Constant GL_FRAGMENT_SHADER

constant GLSL.GL_FRAGMENT_SHADER


Constant GL_FRAMEBUFFER_COMPLETE_EXT

constant GLSL.GL_FRAMEBUFFER_COMPLETE_EXT


Constant GL_FRAMEBUFFER_EXT

constant GLSL.GL_FRAMEBUFFER_EXT


Constant GL_GENERATE_MIPMAP

constant GLSL.GL_GENERATE_MIPMAP


Constant GL_GENERATE_MIPMAP_HINT

constant GLSL.GL_GENERATE_MIPMAP_HINT


Constant GL_INDEX_ARRAY

constant GLSL.GL_INDEX_ARRAY


Constant GL_INDEX_ARRAY_BUFFER_BINDING

constant GLSL.GL_INDEX_ARRAY_BUFFER_BINDING


Constant GL_INTENSITY16F_ARB

constant GLSL.GL_INTENSITY16F_ARB


Constant GL_INTENSITY32F_ARB

constant GLSL.GL_INTENSITY32F_ARB


Constant GL_LUMINANCE16F_ARB

constant GLSL.GL_LUMINANCE16F_ARB


Constant GL_LUMINANCE32F_ARB

constant GLSL.GL_LUMINANCE32F_ARB


Constant GL_LUMINANCE8_EXT

constant GLSL.GL_LUMINANCE8_EXT


Constant GL_LUMINANCE_ALPHA16F_ARB

constant GLSL.GL_LUMINANCE_ALPHA16F_ARB


Constant GL_LUMINANCE_ALPHA32F_ARB

constant GLSL.GL_LUMINANCE_ALPHA32F_ARB


Constant GL_MAX_RECTANGLE_TEXTURE_SIZE_ARB

constant GLSL.GL_MAX_RECTANGLE_TEXTURE_SIZE_ARB


Constant GL_NORMAL_ARRAY

constant GLSL.GL_NORMAL_ARRAY


Constant GL_NORMAL_ARRAY_BUFFER_BINDING

constant GLSL.GL_NORMAL_ARRAY_BUFFER_BINDING


Constant GL_POINT_SPRITE

constant GLSL.GL_POINT_SPRITE


Constant GL_READ_FRAMEBUFFER_EXT

constant GLSL.GL_READ_FRAMEBUFFER_EXT


Constant GL_RGB16F_ARB

constant GLSL.GL_RGB16F_ARB


Constant GL_RGB32F_ARB

constant GLSL.GL_RGB32F_ARB


Constant GL_RGBA16F_ARB

constant GLSL.GL_RGBA16F_ARB


Constant GL_RGBA32F_ARB

constant GLSL.GL_RGBA32F_ARB


Constant GL_SECONDARY_COLOR_ARRAY

constant GLSL.GL_SECONDARY_COLOR_ARRAY


Constant GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING

constant GLSL.GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING


Constant GL_STATIC_COPY

constant GLSL.GL_STATIC_COPY


Constant GL_STATIC_DRAW

constant GLSL.GL_STATIC_DRAW


Constant GL_STATIC_READ

constant GLSL.GL_STATIC_READ


Constant GL_STREAM_COPY

constant GLSL.GL_STREAM_COPY


Constant GL_STREAM_DRAW

constant GLSL.GL_STREAM_DRAW


Constant GL_STREAM_READ

constant GLSL.GL_STREAM_READ


Constant GL_TEXTURE_COORD_ARRAY

constant GLSL.GL_TEXTURE_COORD_ARRAY


Constant GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING

constant GLSL.GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING


Constant GL_TEXTURE_RECTANGLE_ARB

constant GLSL.GL_TEXTURE_RECTANGLE_ARB


Constant GL_VERTEX_ARRAY

constant GLSL.GL_VERTEX_ARRAY


Constant GL_VERTEX_ARRAY_BUFFER_BINDING

constant GLSL.GL_VERTEX_ARRAY_BUFFER_BINDING


Constant GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING

constant GLSL.GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING


Constant GL_VERTEX_PROGRAM_POINT_SIZE

constant GLSL.GL_VERTEX_PROGRAM_POINT_SIZE


Constant GL_VERTEX_SHADER

constant GLSL.GL_VERTEX_SHADER


Constant GL_WEIGHT_ARRAY_BUFFER_BINDING

constant GLSL.GL_WEIGHT_ARRAY_BUFFER_BINDING


Method glActiveTexture

void glActiveTexture(int texture_unit)


Method glAttachShader

void glAttachShader(int program, int shader)


Method glBindBuffer

void glBindBuffer(int target, int buffer)


Method glBindFramebufferEXT

void glBindFramebufferEXT(int which, int fbo)


Method glBindRenderbufferEXT

void glBindRenderbufferEXT(int renderbuffer)


Method glBufferData

void glBufferData(int target, System.Memory data, int usage)
void glBufferData(int target, array(float) data, int usage)
void glBufferData(int target, int size, int usage)


Method glBufferData

void glBufferData(int target, int offset, System.Memory data)
void glBufferData(int target, int offset, System.Memory data, int data_start, int data_len)
void glBufferData(int target, int offset, array(float) data)


Method glCheckFramebufferStatusEXT

int glCheckFramebufferStatusEXT()


Method glColorPointer

void glColorPointer(int size, int type, int stride, int offset)


Method glCompileShader

void glCompileShader(int shader)


Method glCreateProgram

int glCreateProgram()


Method glCreateShader

int glCreateShader(int type)


Method glDisableClientState

void glDisableClientState(int state)


Method glDisableVertexAttribArray

void glDisableVertexAttribArray(int index)


Method glDrawArrays

void glDrawArrays(int mode, int first, int count)


Method glEdgeFlagPointer

void glEdgeFlagPointer(int stride, int offset)


Method glEnableClientState

void glEnableClientState(int state)


Method glEnableVertexAttribArray

void glEnableVertexAttribArray(int index)


Method glFogCoordPointer

void glFogCoordPointer(int type, int stride, int offset)


Method glFramebufferRenderbufferEXT

void glFramebufferRenderbufferEXT(int attachment, int renderbuffer_object)


Method glFramebufferTexture2DEXT

void glFramebufferTexture2DEXT(int attachment, int type, int texture, int mipmap)


Method glGenBuffers

array(int) glGenBuffers(int num)


Method glGenFramebuffersEXT

array(int) glGenFramebuffersEXT(int num)


Method glGenRenderbuffersEXT

array(int) glGenRenderbuffersEXT(int num)


Method glGenerateMipmapEXT

int glGenerateMipmapEXT(int target)


Method glGetAttribLocation
Method glVertexAttrib

int glGetAttribLocation(int progra, string name)
void glVertexAttrib(int location, float value)
void glVertexAttrib(int location, float v1, float v2)
void glVertexAttrib(int location, float v1, float v2, float v3)
void glVertexAttrib(int location, float v1, float v2, float v3, float v4)


Method glGetUniformLocation

void glGetUniformLocation(int program, string uniform)


Method glIsBuffer

bool glIsBuffer(int id)


Method glLinkProgram

void glLinkProgram(int program)


Method glMultiTexCoord

void glMultiTexCoord(int texture_unit, float x)
void glMultiTexCoord(int texture_unit, float x, float y)
void glMultiTexCoord(int texture_unit, float x, float y, float z)


Method glNormalPointer

void glNormalPointer(int type, int stride, int offset)


Method glRenderbufferStorageET

void glRenderbufferStorageET(int type, int width, int height)


Method glSecondaryColorPointer

void glSecondaryColorPointer(int size, int type, int stride, int offset)


Method glShaderSource

void glShaderSource(int shader, string source)


Method glTexCoordPointer

void glTexCoordPointer(int size, int type, int stride, int offset)


Method glTexImage2DNoImage

int glTexImage2DNoImage(int target, int level, int internal, int width, int height, int border, int format, int type)

Description

This is used by the framebuffer code on the pikelevel.


Method glUseProgram

void glUseProgram(int program)


Method glVertexAttribPointer

void glVertexAttribPointer(int index, int size, int type, bool normalize, int stride, System.Memory data)


Method glVertexAttribPointer

void glVertexAttribPointer(int index, int size, int type, bool normalize, int stride, int offset)


Method glVertexPointer

void glVertexPointer(int size, int type, int stride, int offset)