Internet Engineering Task Force (IETF)
Request for Comments: 7666
Category: Standards Track
ISSN: 2070-1721
H. Asai
Univ. of Tokyo
M. MacFaden
VMware Inc.
J. Schoenwaelder
Jacobs University
K. Shima
IIJ Innovation Institute Inc.
T. Tsou
Huawei Technologies (USA)
October 2015

Management Information Base for Virtual Machines

Controlled by a Hypervisor

Abstract

This document defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, this specifies objects for managing virtual machines controlled by a hypervisor (a.k.a. virtual machine monitor).

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7666.

Copyright Notice

Copyright © 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  The Internet-Standard Management Framework  . . . . . . . . .   3
   3.  Overview and Objectives . . . . . . . . . . . . . . . . . . .   3
   4.  Structure of the VM-MIB Module  . . . . . . . . . . . . . . .   5
   5.  Relationship to Other MIB Modules . . . . . . . . . . . . . .   7
   6.  Definitions . . . . . . . . . . . . . . . . . . . . . . . . .   8
     6.1.  VM-MIB  . . . . . . . . . . . . . . . . . . . . . . . . .   8
     6.2.  IANA-STORAGE-MEDIA-TYPE-MIB . . . . . . . . . . . . . . .  43
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  45
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .  45
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  46
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  46
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  47
   Appendix A.  State Transition Table . . . . . . . . . . . . . . .  49
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  51
   Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  51
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  52

1. Introduction

This document defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, this specifies objects for managing virtual machines controlled by a hypervisor (a.k.a. virtual machine monitor). A hypervisor controls multiple virtual machines on a single physical machine by allocating resources to each virtual machine using virtualization technologies. Therefore, this MIB module contains information on virtual machines and their resources controlled by a hypervisor as well as information about a hypervisor's hardware and software.

The design of this MIB module has been derived from product-specific MIB modules -- namely, a MIB module for managing guests of the Xen hypervisor [Xen], a MIB module for managing virtual machines controlled by the VMware hypervisor [VMware], and a MIB module using the libvirt programming interface [libvirt] to access different hypervisors. However, this MIB module attempts to generalize the managed objects to support other implementations of hypervisors.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

3. Overview and Objectives

This document defines a portion of MIB for the management of virtual machines controlled by a hypervisor. This MIB module consists of the managed objects related to system and software information of a hypervisor, the list of virtual machines controlled by the hypervisor, and information of virtual resources allocated to virtual machines by the hypervisor. This document specifies four specific types of virtual resources that are common to many hypervisor implementations: processors (CPUs), memory, network interfaces (NICs), and storage devices. These managed objects are independent of the families of hypervisors or operating systems running on virtual machines.

   +------------------------------------------------------------------+
   | +-------------------------------------------------+              |
   | | Virtual machine                                 |              |
   | |                                                 |              |
   | | +---------+ +---------+ +---------+ +---------+ | .......      |
   | | | Virtual | | Virtual | | Virtual | | Virtual | |              |
   | +-| CPU     |-| memory  |-| storage |-| NIC     |-+              |
   |   +---------+ +---------+ +---------+ +---------+                |
   |            Virtual resources                                     |
   |                   ^                                              |
   |                   | Allocation using virtualization technologies |
   |                   |                                              |
   |                   +-- Physical resources  ._____.                |
   |              +--------+    .--------.    /       \    +--^--+    |
   +- - - - - - - |        | - /________/| - *\_______/* - |     | - -+
   | Hypervisor   |  CPU   |   | Memory |/   | Storage |   | NIC |    |
   |              +--------+   +--------+     \_______/    +-----+    |
   |  +-----------------------+                                       |
   |  ||     MIB objects     ||                                       |
   |  +-----------------------+                                       |
   +------------------------------------------------------------------+

Figure 1: An Example of a Virtualization Environment

On the common implementations of hypervisors, a hypervisor allocates virtual resources from physical resources: virtual CPUs, virtual memory, virtual storage devices, and virtual network interfaces to virtual machines as shown in Figure 1. Since the virtual resources allocated to virtual machines are managed by the hypervisor, the MIB objects are managed at the hypervisor. In case that the objects are accessed through the SNMP, an SNMP agent is launched at the hypervisor to provide access to the objects.

The objects are managed from the viewpoint of the operators of hypervisors, but not the operators of virtual machines; that is, the objects do not take into account the actual resource utilization on each virtual machine but rather the resource allocation from the physical resources. For example, vmNetworkIfIndex indicates the virtual interface associated with an interface of a virtual machine at the hypervisor, and consequently, the 'in' and 'out' directions denote 'from a virtual machine to the hypervisor' and 'from the hypervisor to a virtual machine', respectively. Moreover, vmStorageAllocatedSize denotes the size allocated by the hypervisor, but not the size actually used by the operating system on the virtual machine. This means that vmStorageDefinedSize and vmStorageAllocatedSize do not take different values when the vmStorageSourceType is 'block' or 'raw'.

The objectives of this document are the following: 1) this document defines the MIB objects common to many hypervisors for the management of virtual machines controlled by a hypervisor, and 2) this document clarifies the relationship with other MIB modules for managing host computers and network devices.

4. Structure of the VM-MIB Module

The MIB module is organized into a group of scalars and tables. The scalars below 'vmHypervisor' provide basic information about the hypervisor. The 'vmTable' lists the virtual machines (guests) that are known to the hypervisor. The 'vmCpuTable' provides the mapping table of virtual CPUs to virtual machines, including CPU time used by each virtual CPU. The 'vmCpuAffinityTable' provides the affinity of each virtual CPU to a physical CPU. The 'vmStorageTable' provides the list of virtual storage devices and their mapping to virtual machines. In case that an entry in the 'vmStorageTable' has a corresponding parent physical storage device managed in 'vmStorageTable' of HOST-RESOURCES-MIB [RFC2790], the entry contains a pointer 'vmStorageParent' to the physical storage device. The 'vmNetworkTable' provides the list of virtual network interfaces and their mapping to virtual machines. Each entry in the 'vmNetworkTable' also provides a pointer 'vmNetworkIfIndex' to the corresponding entry in the 'ifTable' of IF-MIB [RFC2863]. In case that an entry in the 'vmNetworkTable' has a corresponding parent physical network interface managed in the 'ifTable' of IF-MIB, the entry contains a pointer 'vmNetworkParent' to the physical network interface.

Notation:

       +-------------+
       | vmOperState | : Finite state; the first line presents the
       |             |   'vmOperState', and the second line presents a
       +-------------+   notification generated if applicable.
       
       + - - - - - - +
       | vmOperState | : Transient state; first line presents the
       |             |   'vmOperState', and the second line presents a
       + - - - - - - +   notification generated if applicable.
       
       !               : Notification; a text followed by the symbol "!"
                         denotes a notification generated.
   
   =====================================================================
   
   +---------------+   + - - - - - - - -+     +------------+
   |  suspended(6) |<--|  suspending(5) |     |  paused(8) |
   | !vmSuspended  |   | !vmSuspending  |     | !vmPaused  |
   +---------------+   + - - - - - - - -+     +------------+
         |                ^                    ^
         |                |                    |
         v                |                    |
   + - - - - - - -+   +-------------+<----------+    + - - - - - - - +
   |  resuming(7) |-->|  running(4) |<-------------->|  migrating(9) |
   | !vmResuming  |   | !vmRunning  |                | !vmMigrating  |
   + - - - - - - -+   +-------------+                + - - - - - - - +
                          |      ^                        ^
                          |      |                        |
                          |      +-------------------+    |
                          |                          |    |
                          v                          v    v
                   + - - - - - - - - - +          +---------------+
                   |  shuttingdown(10) |--------->|  shutdown(11) |
                   | !vmShuttingdown   |          | !vmShutdown   |
                   + - - - - - - - - - +          +---------------+
                                                    ^      |
                                                    |      v !vmDeleted
                   +--------------+   + - - - - - - - -+  (Deleted from
                   |  crashed(12) |   |  preparing(3)  |   vmTable)
                   | !vmCrashed   |   |                |
                   +--------------+   + - - - - - - - -+

Figure 2: State Transition of a Virtual Machine

The 'vmAdminState' and 'vmOperState' textual conventions define an administrative state and an operational state model for virtual machines. Events causing transitions between major operational states will cause the generation of notifications. Per virtual machine (per-VM) notifications (vmRunning, vmShutdown, vmPaused, vmSuspended, vmCrashed, vmDeleted) are generated if vmPerVMNotificationsEnabled is true(1). Bulk notifications (vmBulkRunning, vmBulkShutdown, vmBulkPaused, vmBulkSuspended, vmBulkCrashed, vmBulkDeleted) are generated if vmBulkNotificationsEnabled is true(1). The overview of the transition of 'vmOperState' by the write access to 'vmAdminState' and the notifications generated by the operational state changes are illustrated in Figure 2. The detailed state transition is summarized in Appendix A. Note that the notifications shown in this figure are per-VM notifications. In the case of Bulk notifications, the prefix 'vm' is replaced with 'vmBulk'.

The bulk notification mechanism is designed to reduce the number of notifications that are trapped by an SNMP manager. This is because the number of virtual machines managed by a bunch of hypervisors in a data center possibly becomes several thousands or more, and consequently, many notifications could be trapped if these virtual machines frequently change their administrative state. The per-VM notifications carry more detailed information, but the scalability is a problem. The notification filtering mechanism described in Section 6 of RFC 3413 [RFC3413] is used by the management applications to control the notifications.

5. Relationship to Other MIB Modules

The HOST-RESOURCES-MIB [RFC2790] defines the MIB objects for managing host systems. On systems implementing the HOST-RESOURCES-MIB, the objects of HOST-RESOURCES-MIB indicate resources of a hypervisor. Some objects of HOST-RESOURCES-MIB are used to indicate physical resources through indexes. On systems implementing HOST-RESOURCES-MIB, the 'vmCpuPhysIndex' points to the processor's 'hrDeviceIndex' in the 'hrProcessorTable'. The 'vmStorageParent' also points to the storage device's 'hrStorageIndex' in the 'hrStorageTable'.

The IF-MIB [RFC2863] defines the MIB objects for managing network interfaces. Both physical and virtual network interfaces are required to be contained in the 'ifTable' of IF-MIB. The virtual network interfaces in the 'ifTable' of IF-MIB are pointed from the 'vmNetworkTable' defined in this document through a pointer 'vmNetworkIfIndex'. In case that an entry in the 'vmNetworkTable' has a corresponding parent physical network interface managed in the 'ifTable' of IF-MIB, the entry contains a pointer 'vmNetworkParent' to the physical network interface.

The objects related to virtual switches are not included in the MIB module defined in this document though virtual switches MAY be placed on a hypervisor. This is because the virtual network interfaces are the lowest abstraction of network resources allocated to a virtual machine. Instead of including the objects related to virtual switches, for example, IEEE8021-BRIDGE-MIB [IEEE8021-BRIDGE-MIB] and IEEE8021-Q-BRIDGE-MIB [IEEE8021-Q-BRIDGE-MIB] could be used.

The other objects related to virtual machines such as management IP addresses of a virtual machine are not included in this MIB module because this MIB module defines the objects common to general hypervisors, but they are specific to some hypervisors. They may be included in the entLogicalTable of ENTITY-MIB [RFC6933].

The SNMPv2-MIB [RFC3418] provides an object 'sysObjectID' that identifies the network management subsytem and an object 'sysUpTime' that reports the uptime of the network management portion of the system. The HOST-RESOURCES-MIB [RFC2790] provides an object 'hrSystemUptime' that reports the uptime of the host's operating system. To complement these objects, the new 'vmHvUpTime' object reports the time since the hypervisor was last re-initialized, and the new 'vmHvObjectID' provides an identification of the hypervisor software.

6. Definitions

6.1. VM-MIB

VM-MIB DEFINITIONS ::= BEGIN

IMPORTS

       MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, TimeTicks,
       Counter64, Integer32, mib-2
           FROM SNMPv2-SMI
       OBJECT-GROUP, MODULE-COMPLIANCE, NOTIFICATION-GROUP
           FROM SNMPv2-CONF
       TEXTUAL-CONVENTION, PhysAddress, TruthValue
           FROM SNMPv2-TC
       SnmpAdminString
           FROM SNMP-FRAMEWORK-MIB
       UUIDorZero
           FROM UUID-TC-MIB
       InterfaceIndexOrZero
           FROM IF-MIB

IANAStorageMediaType

           FROM IANA-STORAGE-MEDIA-TYPE-MIB;

vmMIB MODULE-IDENTITY

       LAST-UPDATED "201510120000Z"        -- 12 October 2015
       ORGANIZATION "IETF Operations and Management Area Working Group"
       CONTACT-INFO
               "WG Email: [email protected]
               Mailing list subscription info:
               https://www.ietf.org/mailman/listinfo/opsawg
       
               Hirochika Asai
               The University of Tokyo
               7-3-1 Hongo
               Bunkyo-ku, Tokyo  113-8656
               Japan
               Phone: +81 3 5841 6748
               Email: [email protected]
       
               Michael MacFaden
               VMware Inc.
               Email: [email protected]

Juergen Schoenwaelder
Jacobs University
Campus Ring 1
Bremen 28759
Germany
Email: [email protected]

               Keiichi Shima
               IIJ Innovation Institute Inc.
               3-13 Kanda-Nishikicho
               Chiyoda-ku, Tokyo  101-0054
               Japan
               Email: [email protected]

Tina Tsou
Huawei Technologies (USA)
2330 Central Expressway
Santa Clara, CA 95050
United States
Email: [email protected]"

DESCRIPTION

"This MIB module is for use in managing a hypervisor and virtual machines controlled by the hypervisor.

Copyright © 2015 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info)."

       REVISION "201510120000Z"        -- 12 October 2015
       DESCRIPTION
               "The initial version of this MIB, published as
               RFC 7666."
       ::= { mib-2 236 }
   
   vmNotifications OBJECT IDENTIFIER ::= { vmMIB 0 }
   vmObjects       OBJECT IDENTIFIER ::= { vmMIB 1 }
   vmConformance   OBJECT IDENTIFIER ::= { vmMIB 2 }
   
   -- Textual conversion definitions
   --
   VirtualMachineIndex ::= TEXTUAL-CONVENTION
       DISPLAY-HINT "d"
       STATUS       current
       DESCRIPTION
               "A unique value, greater than zero, identifying a
               virtual machine.  The value for each virtual machine
               MUST remain constant at least from one re-initialization
               of the hypervisor to the next re-initialization."
       SYNTAX       Integer32 (1..2147483647)

VirtualMachineIndexOrZero ::= TEXTUAL-CONVENTION

       DISPLAY-HINT "d"
       STATUS       current
       DESCRIPTION
               "This textual convention is an extension of the
               VirtualMachineIndex convention.  This extension permits
               the additional value of zero.  The meaning of the value
               zero is object-specific and MUST therefore be defined as
               part of the description of any object that uses this
               syntax.  Examples of the usage of zero might include
               situations where a virtual machine is unknown, or when
               none or all virtual machines need to be referenced."
       SYNTAX       Integer32 (0..2147483647)
   
   VirtualMachineAdminState ::= TEXTUAL-CONVENTION
       STATUS      current
       DESCRIPTION
               "The administrative state of a virtual machine:
   
               running(1)    The administrative state of the virtual
                             machine indicating the virtual machine
                             is currently online or should be brought
                             online.

suspended(2) The administrative state of the virtual

machine where its memory and CPU execution state has been saved to persistent store and will be restored at next running(1).

               paused(3)     The administrative state indicating the
                             virtual machine is resident in memory but
                             is no longer scheduled to execute by the
                             hypervisor.
       
               shutdown(4)   The administrative state of the virtual
                             machine indicating the virtual machine
                             is currently offline or should be
                             shutting down."
       SYNTAX       INTEGER {
                       running(1),
                       suspended(2),
                       paused(3),
                       shutdown(4)
                    }

VirtualMachineOperState ::= TEXTUAL-CONVENTION

       STATUS       current
       DESCRIPTION
               "The operational state of a virtual machine:
       
               unknown(1)     The operational state of the virtual
                              machine is unknown, e.g., because the
                              implementation failed to obtain the state
                              from the hypervisor.
       
               other(2)       The operational state of the virtual
                              machine indicating that an operational
                              state is obtained from the hypervisor, but
                              it is not a state defined in this MIB
                              module.
       
               preparing(3)   The operational state of the virtual
                              machine indicating the virtual machine is

currently in the process of preparation, e.g., allocating and initializing virtual storage after creating (defining) the virtual machine.

               running(4)     The operational state of the virtual
                              machine indicating the virtual machine is
                              currently executed, but it is not in the
                              process of preparing(3), suspending(5),
                              resuming(7), migrating(9), and
                              shuttingdown(10).

suspending(5) The operational state of the virtual

machine indicating the virtual machine is currently in the process of suspending to save its memory and CPU execution state to persistent store. This is a transient state from running(4) to suspended(6).

               suspended(6)   The operational state of the virtual
                              machine indicating the virtual machine is
                              currently suspended, which means the
                              memory and CPU execution state of the
                              virtual machine are saved to persistent
                              store.  During this state, the virtual
                              machine is not scheduled to execute by
                              the hypervisor.
               
               resuming(7)    The operational state of the virtual
                              machine indicating the virtual machine is
                              currently in the process of resuming
                              to restore its memory and CPU execution
                              state from persistent store.  This is a
                              transient state from suspended(6) to
                              running(4).
               
               paused(8)      The operational state of the virtual
                              machine indicating the virtual machine is
                              resident in memory but no longer
                              scheduled to execute by the hypervisor.
               
               migrating(9)   The operational state of the virtual
                              machine indicating the virtual machine is
                              currently in the process of migration
                              from/to another hypervisor.
               
               shuttingdown(10)

The operational state of the virtual machine indicating the virtual machine is currently in the process of shutting down. This is a transient state from running(4) to shutdown(11).

               shutdown(11)   The operational state of the virtual
                              machine indicating the virtual machine is
                              down, and CPU execution is no longer
                              scheduled by the hypervisor and its
                              memory is not resident in the hypervisor.
       
               crashed(12)    The operational state of the virtual
                              machine indicating the virtual machine
                              has crashed."
       SYNTAX       INTEGER {
                       unknown(1),
                       other(2),
                       preparing(3),
                       running(4),
                       suspending(5),
                       suspended(6),
                       resuming(7),
                       paused(8),
                       migrating(9),
                       shuttingdown(10),
                       shutdown(11),
                       crashed(12)
                    }

VirtualMachineAutoStart ::= TEXTUAL-CONVENTION

       STATUS       current
       DESCRIPTION
               "The autostart configuration of a virtual machine:
       
               unknown(1)     The autostart configuration is unknown,
                              e.g., because the implementation failed
                              to obtain the autostart configuration
                              from the hypervisor.
       
               enabled(2)     The autostart configuration of the
                              virtual machine is enabled.  The virtual
                              machine should be automatically brought
                              online at the next re-initialization of
                              the hypervisor.
       
               disabled(3)    The autostart configuration of the
                              virtual machine is disabled.  The virtual
       
                              machine should not be automatically
                              brought online at the next
                              re-initialization of the hypervisor."
       SYNTAX      INTEGER {
                       unknown(1),
                       enabled(2),
                       disabled(3)
                   }

VirtualMachinePersistent ::= TEXTUAL-CONVENTION

       STATUS       current
       DESCRIPTION
               "This value indicates whether a virtual machine has a
               persistent configuration, which means the virtual machine
               will still exist after shutting down:
       
               unknown(1)     The persistent configuration is unknown,
                              e.g., because the implementation failed
                              to obtain the persistent configuration
                              from the hypervisor. (read-only)
       
               persistent(2)  The virtual machine is persistent, i.e.,
                              the virtual machine will exist after it
                              shuts down.
       
               transient(3)   The virtual machine is transient, i.e.,
                              the virtual machine will not exist after
                              it shuts down."
       SYNTAX       INTEGER {
                       unknown(1),
                       persistent(2),
                       transient(3)
                    }

VirtualMachineCpuIndex ::= TEXTUAL-CONVENTION

       DISPLAY-HINT "d"
       STATUS       current
       DESCRIPTION
               "A unique value for each virtual machine, greater than
               zero, identifying a virtual CPU assigned to a virtual
               machine.  The value for each virtual CPU MUST remain
               constant at least from one re-initialization of the
               hypervisor to the next re-initialization."
        SYNTAX      Integer32 (1..2147483647)

VirtualMachineStorageIndex ::= TEXTUAL-CONVENTION

       DISPLAY-HINT "d"
       STATUS       current

DESCRIPTION

               "A unique value for each virtual machine, greater than
               zero, identifying a virtual storage device allocated to
               a virtual machine.  The value for each virtual storage
               device MUST remain constant at least from one
               re-initialization of the hypervisor to the next
               re-initialization."
        SYNTAX      Integer32 (1..2147483647)

VirtualMachineStorageSourceType ::= TEXTUAL-CONVENTION

       STATUS       current
       DESCRIPTION
               "The source type of a virtual storage device:
       
               unknown(1)     The source type is unknown, e.g., because
                              the implementation failed to obtain the
                              media type from the hypervisor.
       
               other(2)       The source type is other than those
                              defined in this conversion.
       
               block(3)       The source type is a block device.
       
               raw(4)         The source type is a raw-formatted file.
       
               sparse(5)      The source type is a sparse file.
       
               network(6)     The source type is a network device."
       SYNTAX       INTEGER {
                       unknown(1),
                       other(2),
                       block(3),
                       raw(4),
                       sparse(5),
                       network(6)
                    }

VirtualMachineStorageAccess ::= TEXTUAL-CONVENTION

       STATUS       current
       DESCRIPTION
               "The access permission of a virtual storage:
       
               unknown(1)     The access permission of the virtual
                              storage is unknown.
       
               readwrite(2)   The virtual storage is a read-write
                              device.
       
               readonly(3)    The virtual storage is a read-only
                              device."
       SYNTAX       INTEGER {
                       unknown(1),
                       readwrite(2),
                       readonly(3)
                    }

VirtualMachineNetworkIndex ::= TEXTUAL-CONVENTION

       DISPLAY-HINT "d"
       STATUS       current
       DESCRIPTION
               "A unique value for each virtual machine, greater than
               zero, identifying a virtual network interface allocated
               to the virtual machine.  The value for each virtual
               network interface MUST remain constant at least from one
               re-initialization of the hypervisor to the next
               re-initialization."
        SYNTAX      Integer32 (1..2147483647)

VirtualMachineList ::= TEXTUAL-CONVENTION

       DISPLAY-HINT "1x"
       STATUS       current
       DESCRIPTION
               "Each octet within this value specifies a set of eight
               virtual machine vmIndex values, with the first octet
               specifying virtual machine 1 through 8, the second octet
               specifying virtual machine 9 through 16, etc.  Within
               each octet, the most significant bit represents the
               lowest-numbered vmIndex, and the least significant bit
               represents the highest-numbered vmIndex.  Thus, each
               virtual machine of the host is represented by a single
               bit within the value of this object.  If that bit has
               a value of '1', then that virtual machine is included
               in the set of virtual machines; the virtual machine is
               not included if its bit has a value of '0'."
       SYNTAX      OCTET STRING
   
   -- The hypervisor group
   --
   -- A collection of objects common to all hypervisors.
   --
   vmHypervisor    OBJECT IDENTIFIER ::= { vmObjects 1 }

vmHvSoftware OBJECT-TYPE

       SYNTAX       SnmpAdminString (SIZE (0..255))
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "A textual description of the hypervisor software.  This
               value SHOULD NOT include its version as it SHOULD be
               included in 'vmHvVersion'."
       ::= { vmHypervisor 1 }

vmHvVersion OBJECT-TYPE

       SYNTAX       SnmpAdminString (SIZE (0..255))
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "A textual description of the version of the hypervisor
               software."
       ::= { vmHypervisor 2 }

vmHvObjectID OBJECT-TYPE

       SYNTAX       OBJECT IDENTIFIER
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The vendor's authoritative identification of the
               hypervisor software contained in the entity.  This value
               is allocated within the SMI enterprises
               subtree (1.3.6.1.4.1).  Note that this is different from
               sysObjectID in the SNMPv2-MIB (RFC 3418) because
               sysObjectID is not the identification of the hypervisor
               software but the device, firmware, or management
               operating system."
       ::= { vmHypervisor 3 }

vmHvUpTime OBJECT-TYPE

       SYNTAX       TimeTicks
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The time (in centiseconds) since the hypervisor was
               last re-initialized.  Note that this is different from
               sysUpTime in the SNMPv2-MIB (RFC 3418) and hrSystemUptime
               in the HOST-RESOURCES-MIB (RFC 2790) because sysUpTime is
               the uptime of the network management portion of the
               system, and hrSystemUptime is the uptime of the
               management operating system but not the hypervisor
               software."
       ::= { vmHypervisor 4 }
   
   -- The virtual machine information
   --
   -- A collection of objects common to all virtual machines.
   --
   vmNumber  OBJECT-TYPE
       SYNTAX       Integer32 (0..2147483647)
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The number of virtual machines (regardless of their
               current state) present on this hypervisor."
       ::= { vmObjects 2 }
   
   vmTableLastChange  OBJECT-TYPE
       SYNTAX       TimeTicks
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The value of vmHvUpTime at the time of the last creation
               or deletion of an entry in the vmTable."
       ::= { vmObjects 3 }

vmTable OBJECT-TYPE

       SYNTAX       SEQUENCE OF VmEntry
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "A list of virtual machine entries.  The number of
               entries is given by the value of vmNumber."
       ::= { vmObjects 4 }

vmEntry OBJECT-TYPE

       SYNTAX       VmEntry
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "An entry containing management information applicable
               to a particular virtual machine."
       INDEX   { vmIndex }
       ::= { vmTable 1 }

VmEntry ::=

SEQUENCE {

           vmIndex                 VirtualMachineIndex,
           vmName                  SnmpAdminString,
           vmUUID                  UUIDorZero,
           vmOSType                SnmpAdminString,
           vmAdminState            VirtualMachineAdminState,
           vmOperState             VirtualMachineOperState,
           vmAutoStart             VirtualMachineAutoStart,
           vmPersistent            VirtualMachinePersistent,
           vmCurCpuNumber          Integer32,
           vmMinCpuNumber          Integer32,
           vmMaxCpuNumber          Integer32,
           vmMemUnit               Integer32,
           vmCurMem                Integer32,
           vmMinMem                Integer32,
           vmMaxMem                Integer32,
           vmUpTime                TimeTicks,
           vmCpuTime               Counter64
       }

vmIndex OBJECT-TYPE

       SYNTAX       VirtualMachineIndex
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "A unique value, greater than zero, identifying the
               virtual machine.  The value assigned to a given virtual
               machine may not persist across re-initialization of the
               hypervisor.  A command generator MUST use the vmUUID to
               identify a given virtual machine of interest."
       ::= { vmEntry 1 }

vmName OBJECT-TYPE

       SYNTAX       SnmpAdminString (SIZE (0..255))
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "A textual name of the virtual machine."
       ::= { vmEntry 2 }

vmUUID OBJECT-TYPE

       SYNTAX       UUIDorZero
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The virtual machine's 128-bit Universally Unique
               Identifier (UUID) or the zero-length string when a
               UUID is not available.  If set, the UUID MUST uniquely
               identify a virtual machine from all other virtual
               machines in an administrative domain.  A zero-length
               octet string is returned if no UUID information is
               known."
       ::= { vmEntry 3 }

vmOSType OBJECT-TYPE

       SYNTAX       SnmpAdminString (SIZE (0..255))
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "A textual description containing operating system
               information installed on the virtual machine.  This
               value corresponds to the operating system the hypervisor
               assumes to be running when the virtual machine is
               started.  This may differ from the actual operating
               system in case the virtual machine boots into a
               different operating system."
       ::= { vmEntry 4 }

vmAdminState OBJECT-TYPE

       SYNTAX       VirtualMachineAdminState
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The administrative state of the virtual machine."
       ::= { vmEntry 5 }

vmOperState OBJECT-TYPE

       SYNTAX       VirtualMachineOperState
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The operational state of the virtual machine."
       ::= { vmEntry 6 }

vmAutoStart OBJECT-TYPE

       SYNTAX       VirtualMachineAutoStart
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The autostart configuration of the virtual machine.  If
               this value is enable(2), the virtual machine
               automatically starts at the next initialization of the
               hypervisor."
       ::= { vmEntry 7 }

vmPersistent OBJECT-TYPE

       SYNTAX       VirtualMachinePersistent
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "This value indicates whether the virtual machine has a
               persistent configuration, which means the virtual machine
               will still exist after its shutdown."
       ::= { vmEntry 8 }

vmCurCpuNumber OBJECT-TYPE

       SYNTAX       Integer32 (0..2147483647)
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The number of virtual CPUs currently assigned to the
               virtual machine."
       ::= { vmEntry 9 }

vmMinCpuNumber OBJECT-TYPE

       SYNTAX       Integer32 (-1|0..2147483647)
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The minimum number of virtual CPUs that are assigned to
               the virtual machine when it is in a power-on state.  The
               value -1 indicates that there is no hard boundary for
               the minimum number of virtual CPUs."
       ::= { vmEntry 10 }

vmMaxCpuNumber OBJECT-TYPE

       SYNTAX       Integer32 (-1|0..2147483647)
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The maximum number of virtual CPUs that are assigned to
               the virtual machine when it is in a power-on state.  The
               value -1 indicates that there is no limit."
       ::= { vmEntry 11 }

vmMemUnit OBJECT-TYPE

       SYNTAX       Integer32 (1..2147483647)
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The multiplication unit in bytes for vmCurMem, vmMinMem,
               and vmMaxMem.  For example, when this value is 1024, the
               memory size unit for vmCurMem, vmMinMem, and vmMaxMem is
               KiB."
       ::= { vmEntry 12 }

vmCurMem OBJECT-TYPE

       SYNTAX       Integer32 (0..2147483647)
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The current memory size currently allocated to the
               virtual memory module in the unit designated by
       
               vmMemUnit."
       ::= { vmEntry 13 }

vmMinMem OBJECT-TYPE

       SYNTAX       Integer32 (-1|0..2147483647)
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The minimum memory size defined to the virtual machine
               in the unit designated by vmMemUnit.  The value -1
               indicates that there is no hard boundary for the minimum
               memory size."
       ::= { vmEntry 14 }

vmMaxMem OBJECT-TYPE

       SYNTAX       Integer32 (-1|0..2147483647)
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The maximum memory size defined to the virtual machine
               in the unit designated by vmMemUnit.  The value -1
               indicates that there is no limit."
       ::= { vmEntry 15 }

vmUpTime OBJECT-TYPE

       SYNTAX       TimeTicks
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The time (in centiseconds) since the administrative
               state of the virtual machine was last changed from
               shutdown(4) to running(1)."
       ::= { vmEntry 16 }

vmCpuTime OBJECT-TYPE

       SYNTAX       Counter64
       UNITS        "microsecond"
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The total CPU time used in microseconds.  If the number
               of virtual CPUs is larger than 1, vmCpuTime may exceed
               real time.

Discontinuities in the value of this counter can occur at re-initialization of the hypervisor and administrative state (vmAdminState) changes of the

               virtual machine."
       ::= { vmEntry 17 }

-- The virtual CPU on each virtual machines vmCpuTable OBJECT-TYPE

       SYNTAX       SEQUENCE OF VmCpuEntry
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "The table of virtual CPUs provided by the hypervisor."
       ::= { vmObjects 5 }

vmCpuEntry OBJECT-TYPE

       SYNTAX       VmCpuEntry
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "An entry for one virtual processor assigned to a
               virtual machine."
       INDEX { vmIndex, vmCpuIndex }
       ::= { vmCpuTable 1 }

VmCpuEntry ::=

       SEQUENCE {
           vmCpuIndex              VirtualMachineCpuIndex,
           vmCpuCoreTime           Counter64
       }

vmCpuIndex OBJECT-TYPE

       SYNTAX       VirtualMachineCpuIndex
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "A unique value identifying a virtual CPU assigned to
               the virtual machine."
       ::= { vmCpuEntry 1 }

vmCpuCoreTime OBJECT-TYPE

       SYNTAX       Counter64
       UNITS        "microsecond"
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The total CPU time used by this virtual CPU in
               microseconds.

Discontinuities in the value of this counter can occur at re-initialization of the hypervisor and

               administrative state (vmAdminState) changes of the
               virtual machine."
       ::= { vmCpuEntry 2 }

-- The virtual CPU affinity on each virtual machines

vmCpuAffinityTable OBJECT-TYPE

       SYNTAX       SEQUENCE OF VmCpuAffinityEntry
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "A list of CPU affinity entries of a virtual CPU."
       ::= { vmObjects 6 }

vmCpuAffinityEntry OBJECT-TYPE

       SYNTAX       VmCpuAffinityEntry
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "An entry containing CPU affinity associated with a
               particular virtual machine."
       INDEX   { vmIndex, vmCpuIndex, vmCpuPhysIndex }
       ::= { vmCpuAffinityTable 1 }

VmCpuAffinityEntry ::=

       SEQUENCE {
           vmCpuPhysIndex          Integer32,
           vmCpuAffinity           INTEGER
       }

vmCpuPhysIndex OBJECT-TYPE

       SYNTAX       Integer32 (1..2147483647)
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "A value identifying a physical CPU on the hypervisor.
               On systems implementing the HOST-RESOURCES-MIB, the
               value MUST be the same value that is used as the index
               in the hrProcessorTable (hrDeviceIndex)."
       ::= { vmCpuAffinityEntry 2 }

vmCpuAffinity OBJECT-TYPE

       SYNTAX       INTEGER {
                       unknown(0),   -- unknown
                       enable(1),    -- enabled
                       disable(2)    -- disabled
                    }
       MAX-ACCESS   read-only
       
       STATUS       current
       DESCRIPTION
               "The CPU affinity of this virtual CPU to the physical
               CPU represented by 'vmCpuPhysIndex'."
       ::= { vmCpuAffinityEntry 3 }

-- The virtual storage devices on each virtual machine. This -- document defines some overlapped objects with hrStorage in -- HOST-RESOURCES-MIB (RFC 2790), because virtual resources are -- allocated from the hypervisor's resources, which is the 'host -- resources'.
vmStorageTable OBJECT-TYPE

       SYNTAX       SEQUENCE OF VmStorageEntry
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "The conceptual table of virtual storage devices
               attached to the virtual machine."
       ::= { vmObjects 7 }

vmStorageEntry OBJECT-TYPE

       SYNTAX       VmStorageEntry
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "An entry for one virtual storage device attached to the
               virtual machine."
       INDEX { vmStorageVmIndex, vmStorageIndex }
       ::= { vmStorageTable 1 }

VmStorageEntry ::=

SEQUENCE {

           vmStorageVmIndex        VirtualMachineIndexOrZero,
           vmStorageIndex          VirtualMachineStorageIndex,
           vmStorageParent         Integer32,
           vmStorageSourceType     VirtualMachineStorageSourceType,
           vmStorageSourceTypeString
                                   SnmpAdminString,
           vmStorageResourceID     SnmpAdminString,
           vmStorageAccess         VirtualMachineStorageAccess,
           vmStorageMediaType      IANAStorageMediaType,
           vmStorageMediaTypeString
                                   SnmpAdminString,
           vmStorageSizeUnit       Integer32,
           vmStorageDefinedSize    Integer32,
           vmStorageAllocatedSize  Integer32,
           vmStorageReadIOs        Counter64,
           vmStorageWriteIOs       Counter64,
           vmStorageReadOctets     Counter64,
           vmStorageWriteOctets    Counter64,
           vmStorageReadLatency    Counter64,
           vmStorageWriteLatency   Counter64
       }

vmStorageVmIndex OBJECT-TYPE

       SYNTAX       VirtualMachineIndexOrZero
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "This value identifies the virtual machine (guest) this
               storage device has been allocated to.  The value zero
               indicates that the storage device is currently not
               allocated to any virtual machines."
       ::= { vmStorageEntry 1 }

vmStorageIndex OBJECT-TYPE

       SYNTAX       VirtualMachineStorageIndex
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "A unique value identifying a virtual storage device
               allocated to the virtual machine."
       ::= { vmStorageEntry 2 }

vmStorageParent OBJECT-TYPE

       SYNTAX       Integer32 (0..2147483647)
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The value of hrStorageIndex, which is the parent (i.e.,
               physical) device of this virtual device on systems
               implementing the HOST-RESOURCES-MIB.  The value zero
               denotes this virtual device is not any child
               represented in the hrStorageTable."
       ::= { vmStorageEntry 3 }

vmStorageSourceType OBJECT-TYPE

       SYNTAX       VirtualMachineStorageSourceType
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The source type of the virtual storage device."
       ::= { vmStorageEntry 4 }

vmStorageSourceTypeString OBJECT-TYPE

       SYNTAX       SnmpAdminString (SIZE (0..255))
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "A (detailed) textual string of the source type of the
               virtual storage device.  For example, this represents
               the specific format name of the sparse file."
       ::= { vmStorageEntry 5 }

vmStorageResourceID OBJECT-TYPE

       SYNTAX       SnmpAdminString (SIZE (0..255))
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "A textual string that represents the resource
               identifier of the virtual storage.  For example, this
               contains the path to the disk image file that
               corresponds to the virtual storage."
       ::= { vmStorageEntry 6 }

vmStorageAccess OBJECT-TYPE

       SYNTAX       VirtualMachineStorageAccess
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The access permission of the virtual storage device."
       ::= { vmStorageEntry 7 }

vmStorageMediaType OBJECT-TYPE

       SYNTAX       IANAStorageMediaType
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The media type of the virtual storage device."
       ::= { vmStorageEntry 8 }

vmStorageMediaTypeString OBJECT-TYPE

       SYNTAX       SnmpAdminString (SIZE (0..255))
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "A (detailed) textual string of the virtual storage
               media.  For example, this represents the specific driver
               name of the emulated media such as 'IDE' and 'SCSI'."
       ::= { vmStorageEntry 9 }

vmStorageSizeUnit OBJECT-TYPE

       SYNTAX       Integer32 (1..2147483647)
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The multiplication unit in bytes for
               vmStorageDefinedSize and vmStorageAllocatedSize.  For
               example, when this value is 1048576, the storage size
               unit for vmStorageDefinedSize and vmStorageAllocatedSize
               is MiB."
       ::= { vmStorageEntry 10 }

vmStorageDefinedSize OBJECT-TYPE

       SYNTAX       Integer32 (-1|0..2147483647)
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The defined virtual storage size defined in the unit
               designated by vmStorageSizeUnit.  If this information is
               not available, this value MUST be -1."
       ::= { vmStorageEntry 11 }

vmStorageAllocatedSize OBJECT-TYPE

       SYNTAX       Integer32 (-1|0..2147483647)
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The storage size allocated to the virtual storage from
               a physical storage in the unit designated by
               vmStorageSizeUnit.  When the virtual storage is block
               device or raw file, this value and vmStorageDefinedSize
               are supposed to equal.  This value MUST NOT be different
               from vmStorageDefinedSize when vmStorageSourceType is
               'block' or 'raw'.  If this information is not available,
               this value MUST be -1."
       ::= { vmStorageEntry 12 }

vmStorageReadIOs OBJECT-TYPE

       SYNTAX       Counter64
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The number of read I/O requests.
       
               Discontinuities in the value of this counter can occur
               at re-initialization of the hypervisor and
               administrative state (vmAdminState) changes of the
               virtual machine."
       ::= { vmStorageEntry 13 }
   
   vmStorageWriteIOs OBJECT-TYPE
       SYNTAX       Counter64
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The number of write I/O requests.
   
               Discontinuities in the value of this counter can occur
               at re-initialization of the hypervisor and
               administrative state (vmAdminState) changes of the
               virtual machine."
       ::= { vmStorageEntry 14 }

vmStorageReadOctets OBJECT-TYPE

       SYNTAX       Counter64
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The total number of bytes read from this device.
       
               Discontinuities in the value of this counter can occur
               at re-initialization of the hypervisor and
               administrative state (vmAdminState) changes of the
               virtual machine."
       ::= { vmStorageEntry 15 }

vmStorageWriteOctets OBJECT-TYPE

       SYNTAX       Counter64
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The total number of bytes written to this device.
       
               Discontinuities in the value of this counter can occur
               at re-initialization of the hypervisor and
               administrative state (vmAdminState) changes of the
               virtual machine."
       ::= { vmStorageEntry 16 }

vmStorageReadLatency OBJECT-TYPE

       SYNTAX       Counter64
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The total number of microseconds read requests have
               been queued for this device.

This would typically be implemented by storing the high precision system timestamp of when the request is received from the virtual machine with the request, the difference between this initial timestamp and the time at which the requested operation has completed SHOULD be converted to microseconds and accumulated.

               Discontinuities in the value of this counter can occur at
               re-initialization of the hypervisor and administrative
               state (vmAdminState) changes of the virtual machine."
       ::= { vmStorageEntry 17 }

vmStorageWriteLatency OBJECT-TYPE

       SYNTAX       Counter64
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The total number of microseconds write requests have
               been queued for this device.

This would typically be implemented by storing the high precision system timestamp of when the request is received from the virtual machine with the request; the difference between this initial timestamp and the time at which the requested operation has completed SHOULD be converted to microseconds and accumulated.

               Discontinuities in the value of this counter can occur
               at re-initialization of the hypervisor and
               administrative state (vmAdminState) changes of the
               virtual machine."
       ::= { vmStorageEntry 18 }

-- The virtual network interfaces on each virtual machine. vmNetworkTable OBJECT-TYPE

       SYNTAX       SEQUENCE OF VmNetworkEntry
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "The conceptual table of virtual network interfaces
               attached to the virtual machine."
       ::= { vmObjects 8 }

vmNetworkEntry OBJECT-TYPE

       SYNTAX       VmNetworkEntry
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "An entry for one virtual network interface attached to
       
               the virtual machine."
       INDEX { vmIndex, vmNetworkIndex }
       ::= { vmNetworkTable 1 }

VmNetworkEntry ::=

       SEQUENCE {
           vmNetworkIndex          VirtualMachineNetworkIndex,
           vmNetworkIfIndex        InterfaceIndexOrZero,
           vmNetworkParent         InterfaceIndexOrZero,
           vmNetworkModel          SnmpAdminString,
           vmNetworkPhysAddress    PhysAddress
       }

vmNetworkIndex OBJECT-TYPE

       SYNTAX       VirtualMachineNetworkIndex
       MAX-ACCESS   not-accessible
       STATUS       current
       DESCRIPTION
               "A unique value identifying a virtual network interface
               allocated to the virtual machine."
       ::= { vmNetworkEntry 1 }

vmNetworkIfIndex OBJECT-TYPE

       SYNTAX       InterfaceIndexOrZero
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The value of ifIndex, which corresponds to this virtual
               network interface.  If this device is not represented in
               the ifTable, then this value MUST be zero."
       ::= { vmNetworkEntry 2 }

vmNetworkParent OBJECT-TYPE

       SYNTAX       InterfaceIndexOrZero
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The value of ifIndex, which corresponds to the parent
               (i.e., physical) device of this virtual device.  The
               value zero denotes this virtual device is not any
               child represented in the ifTable."
       ::= { vmNetworkEntry 3 }

vmNetworkModel OBJECT-TYPE

       SYNTAX       SnmpAdminString (SIZE (0..255))
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "A textual string containing the (emulated) model of the
               virtual network interface.  For example, this value is
               'virtio' when the emulation driver model is virtio."
       ::= { vmNetworkEntry 4 }

vmNetworkPhysAddress OBJECT-TYPE

       SYNTAX       PhysAddress
       MAX-ACCESS   read-only
       STATUS       current
       DESCRIPTION
               "The Media Access Control (MAC) address of the virtual
               network interface."
       ::= { vmNetworkEntry 5 }

-- Notification definitions:

vmPerVMNotificationsEnabled OBJECT-TYPE

       SYNTAX       TruthValue
       MAX-ACCESS   read-write
       STATUS       current
       DESCRIPTION
               "Indicates if the notification generator will send
               notifications per virtual machine.  Changes to this
               object MUST NOT persist across re-initialization of
               the management system, e.g., SNMP agent."
       ::= { vmObjects 9 }

vmBulkNotificationsEnabled OBJECT-TYPE

       SYNTAX       TruthValue
       MAX-ACCESS   read-write
       STATUS       current
       DESCRIPTION
               "Indicates if the notification generator will send
               notifications per set of virtual machines.  Changes to
               this object MUST NOT persist across re-initialization of
               the management system, e.g., SNMP agent."
       ::= { vmObjects 10 }

vmAffectedVMs OBJECT-TYPE

       SYNTAX       VirtualMachineList
       MAX-ACCESS   accessible-for-notify
       STATUS       current
       DESCRIPTION
               "A complete list of virtual machines whose state has
               changed.  This object is the only object sent with bulk
               notifications."
       ::= { vmObjects 11 }

vmRunning NOTIFICATION-TYPE

       OBJECTS      {
                       vmName,
                       vmUUID,
                       vmOperState
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of a virtual machine has been changed to
               running(4) from some other state.  The other state is
               indicated by the included value of vmOperState."
       ::= { vmNotifications 1 }

vmShuttingdown NOTIFICATION-TYPE

       OBJECTS      {
                       vmName,
                       vmUUID,
                       vmOperState
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of a virtual machine has been changed to
               shuttingdown(10) from some other state.  The other state
               is indicated by the included value of vmOperState."
       ::= { vmNotifications 2 }

vmShutdown NOTIFICATION-TYPE

       OBJECTS      {
                       vmName,
                       vmUUID,
                       vmOperState
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of a virtual machine has been changed to
               shutdown(11) from some other state.  The other state is
               indicated by the included value of vmOperState."
       ::= { vmNotifications 3 }

vmPaused NOTIFICATION-TYPE

       OBJECTS      {
                       vmName,
                       vmUUID,
                       vmOperState
                    }
       
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of a virtual machine has been changed to
               paused(8) from some other state.  The other state is
               indicated by the included value of vmOperState."
       ::= { vmNotifications 4 }

vmSuspending NOTIFICATION-TYPE

       OBJECTS      {
                       vmName,
                       vmUUID,
                       vmOperState
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of a virtual machine has been changed to
               suspending(5) from some other state.  The other state is
               indicated by the included value of vmOperState."
       ::= { vmNotifications 5 }

vmSuspended NOTIFICATION-TYPE

       OBJECTS      {
                       vmName,
                       vmUUID,
                       vmOperState
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of a virtual machine has been changed to
               suspended(6) from some other state.  The other state is
               indicated by the included value of vmOperState."
       ::= { vmNotifications 6 }

vmResuming NOTIFICATION-TYPE

       OBJECTS      {
                       vmName,
                       vmUUID,
                       vmOperState
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of a virtual machine has been changed to
               resuming(7) from some other state.  The other state is
               indicated by the included value of vmOperState."
       ::= { vmNotifications 7 }

vmMigrating NOTIFICATION-TYPE

       OBJECTS      {
                       vmName,
                       vmUUID,
                       vmOperState
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of a virtual machine has been changed to
               migrating(9) from some other state.  The other state is
               indicated by the included value of vmOperState."
       ::= { vmNotifications 8 }

vmCrashed NOTIFICATION-TYPE

       OBJECTS      {
                       vmName,
                       vmUUID,
                       vmOperState
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when a virtual machine
               has been crashed.  The previous state of the virtual
               machine is indicated by the included value of
               vmOperState."
       ::= { vmNotifications 9 }

vmDeleted NOTIFICATION-TYPE

       OBJECTS      {
                       vmName,
                       vmUUID,
                       vmOperState,
                       vmPersistent
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when a virtual machine
               has been deleted.  The prior state of the virtual
               machine is indicated by the included value of
               vmOperState."
       ::= { vmNotifications 10 }

vmBulkRunning NOTIFICATION-TYPE

       OBJECTS      {
                       vmAffectedVMs
       
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of one or more virtual machines has been changed
               to running(4) from any prior state, except for
               running(4).  Management stations are encouraged to
               subsequently poll the subset of virtual machines of
               interest for vmOperState."
       ::= { vmNotifications 11 }

vmBulkShuttingdown NOTIFICATION-TYPE

       OBJECTS      {
                      vmAffectedVMs
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of one or more virtual machines has been changed
               to shuttingdown(10) from a state other than
               shuttingdown(10).  Management stations are encouraged to
               subsequently poll the subset of virtual machines of
               interest for vmOperState."
       ::= { vmNotifications 12 }

vmBulkShutdown NOTIFICATION-TYPE

       OBJECTS      {
                      vmAffectedVMs
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of one or more virtual machine has been changed to
               shutdown(11) from a state other than shutdown(11).
               Management stations are encouraged to subsequently poll
               the subset of virtual machines of interest for
               vmOperState."
       ::= { vmNotifications 13 }

vmBulkPaused NOTIFICATION-TYPE

       OBJECTS      {
                       vmAffectedVMs
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of one or more virtual machines has been changed
               to paused(8) from a state other than paused(8).
               Management stations are encouraged to subsequently poll
               the subset of virtual machines of interest for
               vmOperState."
       ::= { vmNotifications 14 }

vmBulkSuspending NOTIFICATION-TYPE

       OBJECTS      {
                       vmAffectedVMs
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of one or more virtual machines has been changed
               to suspending(5) from a state other than suspending(5).
               Management stations are encouraged to subsequently poll
               the subset of virtual machines of interest for
               vmOperState."
       ::= { vmNotifications 15 }

vmBulkSuspended NOTIFICATION-TYPE

       OBJECTS      {
                       vmAffectedVMs
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of one or more virtual machines has been changed
               to suspended(6) from a state other than suspended(6).
               Management stations are encouraged to subsequently poll
               the subset of virtual machines of interest for
               vmOperState."
       ::= { vmNotifications 16 }

vmBulkResuming NOTIFICATION-TYPE

       OBJECTS      {
                       vmAffectedVMs
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of one or more virtual machines has been changed
               to resuming(7) from a state other than resuming(7).
               Management stations are encouraged to subsequently poll
               the subset of virtual machines of interest for
               vmOperState."
       ::= { vmNotifications 17 }
   
   vmBulkMigrating NOTIFICATION-TYPE
       OBJECTS      {
                       vmAffectedVMs
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when the operational
               state of one or more virtual machines has been changed
               to migrating(9) from a state other than migrating(9).
               Management stations are encouraged to subsequently poll
               the subset of virtual machines of interest for
               vmOperState."
       ::= { vmNotifications 18 }

vmBulkCrashed NOTIFICATION-TYPE

       OBJECTS      {
                       vmAffectedVMs
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when one or more virtual
               machines have been crashed.  Management stations are
               encouraged to subsequently poll the subset of virtual
               machines of interest for vmOperState."
       ::= { vmNotifications 19 }

vmBulkDeleted NOTIFICATION-TYPE

       OBJECTS      {
                       vmAffectedVMs
                    }
       STATUS       current
       DESCRIPTION
               "This notification is generated when one or more virtual
               machines have been deleted.  Management stations are
               encouraged to subsequently poll the subset of virtual
               machines of interest for vmOperState."
       ::= { vmNotifications 20 }
   
   -- Compliance definitions:
   vmCompliances  OBJECT IDENTIFIER ::= { vmConformance 1 }
   vmGroups       OBJECT IDENTIFIER ::= { vmConformance 2 }

vmFullCompliances MODULE-COMPLIANCE

       STATUS       current
       DESCRIPTION
               "Compliance statement for implementations supporting
               read/write access, according to the object definitions."
       MODULE     -- this module
       MANDATORY-GROUPS {
           vmHypervisorGroup,
           vmVirtualMachineGroup,
           vmCpuGroup,
           vmCpuAffinityGroup,
           vmStorageGroup,
           vmNetworkGroup
       }
       GROUP  vmPerVMNotificationOptionalGroup
       DESCRIPTION
               "Support for per-VM notifications is optional.  If not
               implemented, then vmPerVMNotificationsEnabled MUST report
               false(2)."
       GROUP  vmBulkNotificationsVariablesGroup
       DESCRIPTION
               "Necessary only if vmPerVMNotificationOptionalGroup is
               implemented."
       GROUP  vmBulkNotificationOptionalGroup
       DESCRIPTION
               "Support for bulk notifications is optional.  If not
               implemented, then vmBulkNotificationsEnabled MUST report
               false(2)."
       
       ::= { vmCompliances 1 }

vmReadOnlyCompliances MODULE-COMPLIANCE

       STATUS       current
       DESCRIPTION
               "Compliance statement for implementations supporting
               only read-only access."
       MODULE     -- this module
       MANDATORY-GROUPS {
           vmHypervisorGroup,
           vmVirtualMachineGroup,
           vmCpuGroup,
           vmCpuAffinityGroup,
           vmStorageGroup,
           vmNetworkGroup
       }
       
       OBJECT vmPerVMNotificationsEnabled
       MIN-ACCESS   read-only
       DESCRIPTION
               "Write access is not required."
       
       OBJECT vmBulkNotificationsEnabled
       MIN-ACCESS   read-only
       DESCRIPTION
               "Write access is not required."
       
       ::= { vmCompliances 2 }

vmHypervisorGroup OBJECT-GROUP

       OBJECTS {
           vmHvSoftware,
           vmHvVersion,
           vmHvObjectID,
           vmHvUpTime,
           vmNumber,
           vmTableLastChange,
           vmPerVMNotificationsEnabled,
           vmBulkNotificationsEnabled
       }
       STATUS       current
       DESCRIPTION
               "A collection of objects providing insight into the
               hypervisor itself."
        ::= { vmGroups 1 }

vmVirtualMachineGroup OBJECT-GROUP

       OBJECTS {
           -- vmIndex
           vmName,
           vmUUID,
           vmOSType,
           vmAdminState,
           vmOperState,
           vmAutoStart,
           vmPersistent,
           vmCurCpuNumber,
           vmMinCpuNumber,
           vmMaxCpuNumber,
           vmMemUnit,
           vmCurMem,
           vmMinMem,
           vmMaxMem,
           vmUpTime,
           vmCpuTime
       }
       STATUS       current
       DESCRIPTION
               "A collection of objects providing insight into the
               virtual machines controlled by a hypervisor."
       ::= { vmGroups 2 }

vmCpuGroup OBJECT-GROUP

OBJECTS {

-- vmCpuIndex,

           vmCpuCoreTime
       }
       STATUS       current
       DESCRIPTION
               "A collection of objects providing insight into the
               virtual machines controlled by a hypervisor."
       ::= { vmGroups 3 }

vmCpuAffinityGroup OBJECT-GROUP

       OBJECTS {
           -- vmCpuPhysIndex,
           vmCpuAffinity
       }
       STATUS       current
       DESCRIPTION
               "A collection of objects providing insight into the
               virtual machines controlled by a hypervisor."
       ::= { vmGroups 4 }

vmStorageGroup OBJECT-GROUP

       OBJECTS {
           -- vmStorageVmIndex,
           -- vmStorageIndex,
           vmStorageParent,
           vmStorageSourceType,
           vmStorageSourceTypeString,
           vmStorageResourceID,
           vmStorageAccess,
           vmStorageMediaType,
           vmStorageMediaTypeString,
           vmStorageSizeUnit,
           vmStorageDefinedSize,
           vmStorageAllocatedSize,
           vmStorageReadIOs,
           vmStorageWriteIOs,
           vmStorageReadOctets,
           vmStorageWriteOctets,
           vmStorageReadLatency,
           vmStorageWriteLatency
       }
       STATUS       current
       DESCRIPTION
               "A collection of objects providing insight into the
               virtual storage devices controlled by a hypervisor."
       ::= { vmGroups 5 }

vmNetworkGroup OBJECT-GROUP

       OBJECTS {
           -- vmNetworkIndex,
           vmNetworkIfIndex,
           vmNetworkParent,
           vmNetworkModel,
           vmNetworkPhysAddress
       }
       STATUS       current
       DESCRIPTION
               "A collection of objects providing insight into the
               virtual network interfaces controlled by a hypervisor."
       ::= { vmGroups 6 }

vmPerVMNotificationOptionalGroup NOTIFICATION-GROUP

       NOTIFICATIONS {
           vmRunning,
           vmShuttingdown,
           vmShutdown,
           vmPaused,
           vmSuspending,
           vmSuspended,
           vmResuming,
           vmMigrating,
           vmCrashed,
           vmDeleted
       }
       STATUS       current
       DESCRIPTION
               "A collection of notifications for per-VM notification
               of changes to virtual machine state (vmOperState) as
               reported by a hypervisor."
       ::= { vmGroups 7 }

vmBulkNotificationsVariablesGroup OBJECT-GROUP

       OBJECTS {
           vmAffectedVMs
       }
       STATUS       current
       DESCRIPTION
               "The variables used in vmBulkNotificationOptionalGroup
               virtual network interfaces controlled by a hypervisor."
       ::= { vmGroups 8 }

vmBulkNotificationOptionalGroup NOTIFICATION-GROUP

NOTIFICATIONS {

vmBulkRunning,
vmBulkShuttingdown,
vmBulkShutdown,
vmBulkPaused,

           vmBulkSuspending,
           vmBulkSuspended,
           vmBulkResuming,
           vmBulkMigrating,
           vmBulkCrashed,
           vmBulkDeleted
       }
       STATUS       current
       DESCRIPTION
               "A collection of notifications for bulk notification of
               changes to virtual machine state (vmOperState) as
               reported by a given hypervisor."
       ::= { vmGroups 9 }
   
   END

6.2. IANA-STORAGE-MEDIA-TYPE-MIB

   IANA-STORAGE-MEDIA-TYPE-MIB DEFINITIONS ::= BEGIN

IMPORTS

       MODULE-IDENTITY, mib-2
           FROM SNMPv2-SMI
       TEXTUAL-CONVENTION
           FROM SNMPv2-TC;

ianaStorageMediaTypeMIB MODULE-IDENTITY

       LAST-UPDATED "201510120000Z"        -- 12 October 2015
       ORGANIZATION "IANA"
       CONTACT-INFO
               "Internet Assigned Numbers Authority
                Postal: ICANN
                        12025 Waterfront Drive, Suite 300
                        Los Angeles, CA 90094-2536
                        United States
                Tel:    +1 310-301-5800
                Email: [email protected]"

DESCRIPTION

"This MIB module defines Textual Conventions representing the media type of a storage device.

Copyright © 2015 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the

               Simplified BSD License set forth in Section 4.c of the
               IETF Trust's Legal Provisions Relating to IETF Documents
               (http://trustee.ietf.org/license-info)."
          
          REVISION "201510120000Z"        -- 12 October 2015
          DESCRIPTION
                  "The initial version of this MIB, published as
                  RFC 7666."
          ::= { mib-2 237 }

IANAStorageMediaType ::= TEXTUAL-CONVENTION

       STATUS       current
       DESCRIPTION
               "The media type of a storage device:
       
               unknown(1)     The media type is unknown, e.g., because
                              the implementation failed to obtain the
                              media type from the hypervisor.
       
               other(2)       The media type is other than those
                              defined in this conversion.

hardDisk(3) The media type is hard disk.

opticalDisk(4) The media type is optical disk.

floppyDisk(5) The media type is floppy disk."

       SYNTAX       INTEGER {
       
                       other(1),
                       unknown(2),
                       hardDisk(3),
                       opticalDisk(4),
                       floppyDisk(5)
                    }
   
   END

7. IANA Considerations

This document defines the first version of the IANA-maintained IANA-STORAGE-MEDIA-TYPE-MIB module, which allows new storage media types to be added to the enumeration in IANAStorageMediaType. An Expert Review, as defined in RFC 5226 [RFC5226], is REQUIRED for each modification.

The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER values recorded in the SMI Numbers registry:

Descriptor OBJECT IDENTIFIER value

---------- -----------------------

         vmMIB                     { mib-2 236 }
         ianaStorageMediaTypeMIB   { mib-2 237 }

8. Security Considerations

This MIB module is typically implemented on the hypervisor not inside a virtual machine. Virtual machines, possibly under other administrative domains, would not have access to this MIB as the SNMP service would typically operate in a separate management network.

There are two objects defined in this MIB module, vmPerVMNotificationsEnabled and vmBulkNotificationsEnabled, that have a MAX-ACCESS clause of read-write. Enabling notifications can lead to a substantial number of notifications if many virtual machines change their state concurrently. Hence, such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on the management system. It is RECOMMENDED that these objects have access of read-only instead of read-write on deployments where SNMPv3 strong security (i.e., authentication and encryption) is not used.

There are a number of managed objects in this MIB that may contain sensitive information. The objects in the vmHvSoftware and vmHvVersion list information about the hypervisor's software and version. Some may wish not to disclose to others which software they are running. Further, an inventory of the running software and versions may be helpful to an attacker who hopes to exploit software bugs in certain applications. Moreover, the objects in the vmTable, vmCpuTable, vmCpuAffinityTable, vmStorageTable, and vmNetworkTable list information about the virtual machines and their virtual resource allocation. Some may wish not to disclose to others how many and what virtual machines they are operating.

It is thus important to control even GET access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. Not all versions of SNMP provide features for such a secure environment.

SNMPv1 by itself is not a secure environment. Even if the network itself is secure (for example by using IPsec), there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

It is recommended that the implementers consider using the security features as provided by the SNMPv3 framework. Specifically, the use of the User-based Security Model [RFC3414] and the View-based Access Control Model [RFC3415] is recommended.

It is then a customer/user responsibility to ensure that the SNMP entity giving access to an instance of this MIB is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

9. References

9.1. Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.
   
   [RFC2578]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
              Schoenwaelder, Ed., "Structure of Management Information
              Version 2 (SMIv2)", STD 58, RFC 2578,
              DOI 10.17487/RFC2578, April 1999,
              <http://www.rfc-editor.org/info/rfc2578>.
   
   [RFC2579]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
              Schoenwaelder, Ed., "Textual Conventions for SMIv2",
              STD 58, RFC 2579, DOI 10.17487/RFC2579, April 1999,
              <http://www.rfc-editor.org/info/rfc2579>.
   
   [RFC2580]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
              Schoenwaelder, Ed., "Conformance Statements for SMIv2",
              STD 58, RFC 2580, DOI 10.17487/RFC2580, April 1999,
              <http://www.rfc-editor.org/info/rfc2580>.
   
   [RFC2790]  Waldbusser, S. and P. Grillo, "Host Resources MIB",
              RFC 2790, DOI 10.17487/RFC2790, March 2000,
              <http://www.rfc-editor.org/info/rfc2790>.
   
   [RFC2863]  McCloghrie, K. and F. Kastenholz, "The Interfaces Group
              MIB", RFC 2863, DOI 10.17487/RFC2863, June 2000,
              <http://www.rfc-editor.org/info/rfc2863>.
   
   [RFC3413]  Levi, D., Meyer, P., and B. Stewart, "Simple Network
              Management Protocol (SNMP) Applications", STD 62,
              RFC 3413, DOI 10.17487/RFC3413, December 2002,
              <http://www.rfc-editor.org/info/rfc3413>.
   
   [RFC3414]  Blumenthal, U. and B. Wijnen, "User-based Security Model
              (USM) for version 3 of the Simple Network Management
              Protocol (SNMPv3)", STD 62, RFC 3414,
              DOI 10.17487/RFC3414, December 2002,
              <http://www.rfc-editor.org/info/rfc3414>.
   
   [RFC3415]  Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based
              Access Control Model (VACM) for the Simple Network
              Management Protocol (SNMP)", STD 62, RFC 3415,
              DOI 10.17487/RFC3415, December 2002,
              <http://www.rfc-editor.org/info/rfc3415>.
   
   [RFC3418]  Presuhn, R., Ed., "Management Information Base (MIB) for
              the Simple Network Management Protocol (SNMP)", STD 62,
              RFC 3418, DOI 10.17487/RFC3418, December 2002,
              <http://www.rfc-editor.org/info/rfc3418>.
   
   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              DOI 10.17487/RFC5226, May 2008,
              <http://www.rfc-editor.org/info/rfc5226>.
   
   [RFC6933]  Bierman, A., Romascanu, D., Quittek, J., and M.
              Chandramouli, "Entity MIB (Version 4)", RFC 6933,
              DOI 10.17487/RFC6933, May 2013,
              <http://www.rfc-editor.org/info/rfc6933>.

9.2. Informative References

[IEEE8021-BRIDGE-MIB]

IEEE, "IEEE8021-BRIDGE-MIB", October 2008,

<http://www.ieee802.org/1/files/public/MIBs/

IEEE8021-BRIDGE-MIB-200810150000Z.txt>.

[IEEE8021-Q-BRIDGE-MIB]

IEEE, "IEEE8021-Q-BRIDGE-MIB", October 2008,

<http://www.ieee802.org/1/files/public/MIBs/

IEEE8021-Q-BRIDGE-MIB-200810150000Z.txt>.

   [libvirt]  The libvirt developers, "The libvirt virtialization API",
              <http://www.libvirt.org/>.
   
   [RFC3410]  Case, J., Mundy, R., Partain, D., and B. Stewart,
              "Introduction and Applicability Statements for Internet-
              Standard Management Framework", RFC 3410,
              DOI 10.17487/RFC3410, December 2002,
              <http://www.rfc-editor.org/info/rfc3410>.
   
   [VMware]   VMware, Inc., "The VMware Hypervisor",
              <http://www.vmware.com/>.
   
   [Xen]      The Xen Project, "The Xen Hypervisor",
              <http://www.xenproject.org/>.

Appendix A. State Transition Table

   +--------------+----------------+--------------+--------------------+
   |    State     |   Change to    |  Next State  |    Notification    |
   |              |  vmAdminState  |              |                    |
   |              |     at the     |              |                    |
   |              | hypervisor or  |              |                    |
   |              |    (Event)     |              |                    |
   +--------------+----------------+--------------+--------------------+
   |  suspended   |    running     |   resuming   |    vmResuming |    |
   |              |                |              |   vmBulkResuming   |
   |              |                |              |                    |
   |  suspending  |    (suspend    |  suspended   |   vmSuspended |    |
   |              |   operation    |              |  vmBulkSuspended   |
   |              |   completed)   |              |                    |
   |              |                |              |                    |
   |   running    |   suspended    |  suspending  |   vmSuspending |   |
   |              |                |              |  vmBulkSuspending  |
   |              |                |              |                    |
   |              |    shutdown    | shuttingdown |  vmShuttingdown |  |
   |              |                |              | vmBulkShuttingdown |
   |              |                |              |                    |
   |              | (migration to  |  migrating   |   vmMigrating |    |
   |              |     other      |              |  vmBulkMigrating   |
   |              |   hypervisor   |              |                    |
   |              |   initiated)   |              |                    |
   |              |                |              |                    |
   |   resuming   |    (resume     |   running    |    vmRunning |     |
   |              |   operation    |              |   vmBulkRunning    |
   |              |   completed)   |              |                    |
   |              |                |              |                    |
   |    paused    |    running     |   running    |    vmRunning |     |
   |              |                |              |   vmBulkRunning    |
   |              |                |              |                    |
   | shuttingdown |   (shutdown    |   shutdown   |    vmShutdown |    |
   |              |   operation    |              |   vmBulkShutdown   |
   |              |   completed)   |              |                    |
   |              |                |              |                    |
   |   shutdown   |    running     |   running    |    vmRunning |     |
   |              |                |              |   vmBulkRunning    |
   |              |                |              |                    |
   |              | (if this state |  migrating   |   vmMigrating |    |
   |              |    entry is    |              |  vmBulkMigrating   |
   |              |  created by a  |              |                    |
   |              |   migration    |              |                    |
   |              | operation (*)  |              |                    |
   |              |                |              |                    |
   
   |              |   (deletion    |  (no state)  |    vmDeleted |     |
   |              |   operation    |              |   vmBulkDeleted    |
   |              |   completed)   |              |                    |
   |              |                |              |                    |
   |  migrating   |   (migration   |   running    |    vmRunning |     |
   |              |   from other   |              |   vmBulkRunning    |
   |              |   hypervisor   |              |                    |
   |              |   completed)   |              |                    |
   |              |                |              |                    |
   |              | (migration to  |   shutdown   |    vmShutdown |    |
   |              |     other      |              |   vmBulkShutdown   |
   |              |   hypervisor   |              |                    |
   |              |   completed)   |              |                    |
   |              |                |              |                    |
   |  preparing   |  (preparation  |   shutdown   |    vmShutdown |    |
   |              |   completed)   |              |   vmBulkShutdown   |
   |              |                |              |                    |
   |   crashed    |       -        |      -       |         -          |
   |              |                |              |                    |
   |              |   (crashed)    |   crashed    |    vmCrashed |     |
   |              |                |              |   vmBulkCrashed    |
   |              |                |              |                    |
   |  (no state)  |  (preparation  |  preparing   |         -          |
   |              |   initiated)   |              |                    |
   |              |                |              |                    |
   |              | (migrate from  | shutdown (*) |    vmShutdown |    |
   |              |     other      |              |   vmBulkShutdown   |
   |              |   hypervisor   |              |                    |
   |              |   initiated)   |              |                    |
   +--------------+----------------+--------------+--------------------+

State Transition Table for vmOperState

Acknowledgements

The authors would like to thank Andy Bierman, David Black, Joe Marcus Clarke, C.M. Heard, Joel Jaeggli, Tom Petch, Randy Presuhn, and Ian West for providing helpful comments during the development of this specification.

Juergen Schoenwaelder was partly funded by Flamingo, a Network of Excellence project (ICT-318488) supported by the European Commission under its Seventh Framework Programme.

Contributors

Yuji Sekiya
The University of Tokyo
2-11-16 Yayoi
Bunkyo-ku, Tokyo 113-8658
Japan

   Email: [email protected]

Cathy Zhou
Huawei Technologies
Bantian, Longgang District
Shenzhen 518129
China

Email:

          [email protected]

Hiroshi Esaki
The University of Tokyo
7-3-1 Hongo
Bunkyo-ku, Tokyo 113-8656
Japan

   Email: [email protected]

Authors' Addresses

Hirochika Asai
The University of Tokyo
7-3-1 Hongo
Bunkyo-ku, Tokyo 113-8656
Japan

   Phone: +81 3 5841 6748
   Email: [email protected]

Michael MacFaden
VMware Inc.

Email:

          [email protected]

Juergen Schoenwaelder
Jacobs University
Campus Ring 1
Bremen 28759
Germany

   Email: [email protected]
   
   Keiichi Shima
   IIJ Innovation Institute Inc.
   2-10-2 Fujimi
   Chiyoda-ku, Tokyo  102-0071
   Japan

Email:

          [email protected]
   
   Tina Tsou
   Huawei Technologies (USA)
   2330 Central Expressway
   Santa Clara, CA  95050
   United States
   
   Email: [email protected]