Network Working Group
Request for Comments: 1650
Category: Standards Track
F. Kastenholz
FTP Software, Inc.
August 1994

Definitions of Managed Objects for

the Ethernet-like Interface Types using SMIv2

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Table of Contents

   1. Introduction ..........................................    1
   2. The SNMPv2 Network Management Framework ...............    2
   2.1 Object Definitions ...................................    2
   3. Change Log ............................................    2
   4. Overview ..............................................    3
   4.1 Relation to RFC 1213 .................................    4
   4.2 Relation to RFC 1573 .................................    4
   4.2.1 Layering Model .....................................    4
   4.2.2 Virtual Circuits ...................................    4
   4.2.3 ifTestTable ........................................    4
   4.2.4 ifRcvAddressTable ..................................    5
   4.2.5 ifPhysAddress ......................................    5
   4.2.6 ifType .............................................    6
   5. Definitions ...........................................    6
   6. Acknowledgements ......................................   18
   7. References ............................................   19
   8. Security Considerations ...............................   20
   9. Author's Address ......................................   20

1. Introduction

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it defines objects for managing ethernet-like objects.

This memo also includes a MIB module. This MIB module corrects minor errors in the earlier version of this MIB: RFC 1398 [15] and also re-specifies that MIB in a manner which is both compliant to the SNMPv2 SMI and semantically-identical to the existing SNMPv1-based definitions.

2. The SNMPv2 Network Management Framework

The SNMPv2 Network Management Framework consists of four major components. They are:

      o    RFC 1442 [16] which defines the SMI, the mechanisms used
           for describing and naming objects for the purpose of
           management.
      
      o    STD 17, RFC 1213 [6] defines MIB-II, the core set of
           managed objects for the Internet suite of protocols.
      
      o    RFC 1445 [17] which defines the administrative and other
           architectural aspects of the framework.
      
      o    RFC 1448 [18] which defines the protocol used for network
           access to managed objects.

The Framework permits new objects to be defined for the purpose of experimentation and evaluation.

2.1. Object Definitions

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) [7] defined in the SMI [16]. In particular, each object object type is named by an OBJECT IDENTIFIER, an administratively assigned name. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the descriptor, to refer to the object type.

3. Change Log

This section enumerates changes made to RFC 1398 to produce this document.

      (1)   The "boilerplate" was changed to reflect the new
            boilerplate for SNMPv2.
      
      (2)   A section describing the applicability of various parts
            of RFC 1573 to ethernet-like interfaces has been added.
      
      (3)   A minor error in the description of the TDR test was
            fixed.
      
      (4)   A loopback test was defined to replace the standard
            loopback test that was defined in RFC 1229.
      
      (5)   The description of dot3CollFrequencies was made a bit
            clearer.
      
      (6)   A new object, EtherChipset, has been added. This object
            replaces the ifExtnsChipSet object, which has been
            removed per the Interface MIB Evolution effort.
      
      (7)   Several minor editorial changes, spelling corrections,
            grammar and punctuation corrections, and so forth, were
            made.

4. Overview

Instances of these object types represent attributes of an interface to an ethernet-like communications medium. At present, ethernet-like media are identified by three values of the ifType object in the Internet-standard MIB:

         ethernet-csmacd(6)
         iso88023-csmacd(7)
         starLan(11)

For these interfaces, the value of the ifSpecific variable in the MIB-II [6] has the OBJECT IDENTIFIER value:

      dot3    OBJECT IDENTIFER ::= { transmission 7 }

The definitions presented here are based on the IEEE 802.3 Layer Management Specification [9], as originally interpreted by Frank Kastenholz then of Interlan in [10]. Implementors of these MIB objects should note that the IEEE document explicitly describes (in the form of Pascal pseudocode) when, where, and how various MAC attributes are measured. The IEEE document also describes the effects of MAC actions that may be invoked by manipulating instances of the MIB objects defined here.

To the extent that some of the attributes defined in [9] are represented by previously defined objects in the Internet-standard MIB or in the Generic Interface Extensions MIB [11], such attributes are not redundantly represented by objects defined in this memo. Among the attributes represented by objects defined in other memos are the number of octets transmitted or received on a particular interface, the number of frames transmitted or received on a particular interface, the promiscuous status of an interface, the MAC address of an interface, and multicast information associated with an interface.

4.1. Relation to RFC 1213

This section applies only when this MIB is used in conjunction with the "old" (i.e., pre-RFC 1573) interface group.

The relationship between an ethernet-like interface and an interface in the context of the Internet-standard MIB is one-to-one. As such, the value of an ifIndex object instance can be directly used to identify corresponding instances of the objects defined herein.

4.2. Relation to RFC 1573

RFC 1573, the Interface MIB Evolution, requires that any MIB which is an adjunct of the Interface MIB, clarify specific areas within the Interface MIB. These areas were intentionally left vague in RFC 1573 to avoid over constraining the MIB, thereby precluding management of certain media-types.

Section 3.3 of RFC 1573 enumerates several areas which a media- specific MIB must clarify. Each of these areas is addressed in a following subsection. The implementor is referred to RFC 1573 in order to understand the general intent of these areas.

4.2.1. Layering Model

This MIB does not provide for layering. There are no sublayers.

EDITOR'S NOTE:

I could forsee the development of an 802.2 and enet-transceiver MIB. They could be higher and lower sublayers, respectively. All that THIS document should do is allude to the possibilities and urge the implementor to be aware of the possibility and that they may have requirements which supersede the requirements in this document.

4.2.2. Virtual Circuits

This medium does not support virtual circuits and this area is not applicable to this MIB.

4.2.3. ifTestTable

This MIB defines two tests for media which are instumented with this MIB; TDR and Loopback. Implementation of these tests is not required. Many common interface chips do not support one or both of these tests.

These two tests are provided as a convenience, allowing a common method to invoke the test.

Standard MIBs do not include objects in which to return the results of the TDR test. Any needed objects MUST be provided in the vendor specific MIB.

4.2.4. ifRcvAddressTable

This table contains all IEEE 802.3 addresses, unicast, multicast, and broadcast, for which this interface will receive packets and forward them up to a higher layer entity for local consumption. The format of the address, contained in ifRcvAddressAddress, is the same as for ifPhysAddress.

In the event that the interface is part of a MAC bridge, this table does not include unicast addresses which are accepted for possible forwarding out some other port. This table is explicitly not intended to provide a bridge address filtering mechanism.

4.2.5. ifPhysAddress

This object contains the IEEE 802.3 address which is placed in the source-address field of any Ethernet, Starlan, or IEEE 802.3 frames that originate at this interface. Usually this will be kept in ROM on the interface hardware. Some systems may set this address via software.

In a system where there are several such addresses the designer has a tougher choice. The address chosen should be the one most likely to be of use to network management (e.g. the address placed in ARP responses for systems which are primarily IP systems).

If the designer truly can not chose, use of the factory- provided ROM address is suggested.

If the address can not be determined, an octet string of zero length should be returned.

The address is stored in binary in this object. The address is stored in "canonical" bit order, that is, the Group Bit is positioned as the low-order bit of the first octet. Thus, the first byte of a multicast address would have the bit 0x01 set.

4.2.6. ifType

This MIB applies to interfaces which have any of the following three ifType values:

         ethernet-csmacd(6)
         iso88023-csmacd(7)
         starLan(11)

Interfaces with any of these ifType values map to the EtherLike-MIB in the same manner. The EtherLike-MIB applies equally to all three types; there are no implementation differences.

5. Definitions

EtherLike-MIB DEFINITIONS ::= BEGIN

IMPORTS

       MODULE-IDENTITY, OBJECT-TYPE, Counter32, Gauge32,
       Integer32,                               FROM SNMPv2-SMI
       TEXTUAL-CONVENTION, PhysAddress,         FROM SNMPv2-TC
       MODULE-COMPLIANCE, OBJECT-GROUP          FROM SNMPv2-CONF
       ifIndex, ifEntry                         FROM IF-MIB
       mib-2                                    FROM RFC1213-MIB;

etherMIB MODULE-IDENTITY

       LAST-UPDATED "9402030400Z"
       ORGANIZATION "IETF Interfaces MIB Working Group"
       CONTACT-INFO
       
        "        Frank Kastenholz

Postal:

FTP Software
2 High Street
North Andover, MA 01845
US

            Tel: +1 508 685 4000
         E-Mail: [email protected]"
       DESCRIPTION
     "The MIB module to describe generic objects for
     Ethernet-like network interfaces. This MIB is an
     updated version of the Ethernet-like MIB in RFC
     1398."
       ::= { mib-2 35 }
   
   etherMIBObjects OBJECT IDENTIFIER ::= { etherMIB 1 }
   dot3    OBJECT IDENTIFIER ::= { transmission 7 }
   
   -- the Ethernet-like Statistics group
   
    dot3StatsTable  OBJECT-TYPE
         SYNTAX     SEQUENCE OF Dot3StatsEntry
         MAX-ACCESS not-accessible
         STATUS     current
         DESCRIPTION
          "Statistics for a collection of ethernet-like
          interfaces attached to a particular system."
         ::= { dot3 2 }
   
    dot3StatsEntry   OBJECT-TYPE
         SYNTAX      Dot3StatsEntry
         MAX-ACCESS  not-accessible
         STATUS      current
         DESCRIPTION
           "Statistics for a particular interface to an
           ethernet-like medium."
         INDEX       { dot3StatsIndex }
         ::= { dot3StatsTable 1 }
   
    Dot3StatsEntry ::= SEQUENCE {
         dot3StatsIndex                      INTEGER,
         dot3StatsAlignmentErrors            Counter32,
         dot3StatsFCSErrors                  Counter32,
         dot3StatsSingleCollisionFrames      Counter32,
         dot3StatsMultipleCollisionFrames    Counter32,
         dot3StatsSQETestErrors              Counter32,
         dot3StatsDeferredTransmissions      Counter32,
         dot3StatsLateCollisions             Counter32,
         dot3StatsExcessiveCollisions        Counter32,
         dot3StatsInternalMacTransmitErrors  Counter32,
         dot3StatsCarrierSenseErrors         Counter32,
         dot3StatsFrameTooLongs              Counter32,
         dot3StatsInternalMacReceiveErrors   Counter32,
                 dot3StatsEtherChipSet               OBJECT IDENTIFIER
    }
   
    dot3StatsIndex   OBJECT-TYPE
         SYNTAX      INTEGER
         ACCESS      read-only
         STATUS      mandatory
         DESCRIPTION
           "An index value that uniquely identifies an
           interface to an ethernet-like medium.  The
           interface identified by a particular value of
           this index is the same interface as identified
           by the same value of ifIndex."
         ::= { dot3StatsEntry 1 }
   
    dot3StatsAlignmentErrors   OBJECT-TYPE
         SYNTAX     Counter32
         MAX-ACCESS read-only
         STATUS     current
         DESCRIPTION
          "A count of frames received on a particular
          interface that are not an integral number of
          octets in length and do not pass the FCS check.
   
          The count represented by an instance of this
          object is incremented when the alignmentError
          status is returned by the MAC service to the
          LLC (or other MAC user). Received frames for
          which multiple error conditions obtain are,
          according to the conventions of IEEE 802.3
          Layer Management, counted exclusively according
          to the error status presented to the LLC."
         REFERENCE
         "IEEE 802.3 Layer Management"
         ::= { dot3StatsEntry 2 }
   
    dot3StatsFCSErrors   OBJECT-TYPE
         SYNTAX      Counter32
         MAX-ACCESS  read-only
         STATUS      current
         DESCRIPTION
         "A count of frames received on a particular
         interface that are an integral number of octets
         in length but do not pass the FCS check.

The count represented by an instance of this
object is incremented when the frameCheckError
status is returned by the MAC service to the
LLC (or other MAC user). Received frames for which multiple error conditions obtain are,
according to the conventions of IEEE 802.3 Layer Management, counted exclusively according
to the error status presented to the LLC."
REFERENCE
"IEEE 802.3 Layer Management"
::= { dot3StatsEntry 3 }

    dot3StatsSingleCollisionFrames   OBJECT-TYPE
         SYNTAX      Counter32
         MAX-ACCESS  read-only
         STATUS      current
         DESCRIPTION
         "A count of successfully transmitted frames on
         a particular interface for which transmission
         is inhibited by exactly one collision.

A frame that is counted by an instance of this
object is also counted by the corresponding
instance of either the ifOutUcastPkts, ifOutMulticastPkts, or ifOutBroadcastPkts,
and is not counted by the corresponding
instance of the dot3StatsMultipleCollisionFrames
object."
REFERENCE
"IEEE 802.3 Layer Management"
::= { dot3StatsEntry 4 }

    dot3StatsMultipleCollisionFrames   OBJECT-TYPE
         SYNTAX      Counter32
         MAX-ACCESS  read-only
         STATUS      current
         DESCRIPTION
         "A count of successfully transmitted frames on
         a particular interface for which transmission
          is inhibited by more than one collision.

A frame that is counted by an instance of this
object is also counted by the corresponding
instance of either the ifOutUcastPkts, ifOutMulticastPkts, or ifOutBroadcastPkts,
and is not counted by the corresponding
instance of the dot3StatsSingleCollisionFrames
object."
REFERENCE
"IEEE 802.3 Layer Management"
::= { dot3StatsEntry 5 }

    dot3StatsSQETestErrors   OBJECT-TYPE
         SYNTAX     Counter32
         MAX-ACCESS read-only
         STATUS     current
         DESCRIPTION
         "A count of times that the SQE TEST ERROR

message is generated by the PLS sublayer for a particular interface. The SQE TEST ERROR
message is defined in section 7.2.2.2.4 of ANSI/IEEE 802.3-1985 and its generation is
described in section 7.2.4.6 of the same
document."
REFERENCE
"ANSI/IEEE Std 802.3-1985 Carrier Sense
Multiple Access with Collision Detection Access
Method and Physical Layer Specifications"
::= { dot3StatsEntry 6 }

    dot3StatsDeferredTransmissions   OBJECT-TYPE
         SYNTAX      Counter32
         MAX-ACCESS  read-only
         STATUS      current
         DESCRIPTION
         "A count of frames for which the first
         transmission attempt on a particular interface
         is delayed because the medium is busy.

The count represented by an instance of this
object does not include frames involved in
collisions."
REFERENCE
"IEEE 802.3 Layer Management"
::= { dot3StatsEntry 7 }

    dot3StatsLateCollisions   OBJECT-TYPE
         SYNTAX      Counter32
         MAX-ACCESS  read-only
         STATUS      current
         DESCRIPTION
         "The number of times that a collision is
         detected on a particular interface later than
         512 bit-times into the transmission of a
         packet.

Five hundred and twelve bit-times corresponds
to 51.2 microseconds on a 10 Mbit/s system. A (late) collision included in a count
represented by an instance of this object is also considered as a (generic) collision for
purposes of other collision-related
statistics."
REFERENCE
"IEEE 802.3 Layer Management"
::= { dot3StatsEntry 8 }

    dot3StatsExcessiveCollisions   OBJECT-TYPE
         SYNTAX    Counter32
         MAX-ACCESS    read-only
         STATUS    current
         DESCRIPTION
         "A count of frames for which transmission on a
         particular interface fails due to excessive
         collisions."
         REFERENCE
         "IEEE 802.3 Layer Management"
         ::= { dot3StatsEntry 9 }
    
    dot3StatsInternalMacTransmitErrors   OBJECT-TYPE
         SYNTAX    Counter32
         MAX-ACCESS    read-only
         STATUS    current
         DESCRIPTION
         "A count of frames for which transmission on a
         particular interface fails due to an internal
         MAC sublayer transmit error. A frame is only
         counted by an instance of this object if it is
         not counted by the corresponding instance of
         either the dot3StatsLateCollisions object, the
         dot3StatsExcessiveCollisions object, or the
         dot3StatsCarrierSenseErrors object.

The precise meaning of the count represented by an instance of this object is implementation-
specific. In particular, an instance of this
object may represent a count of transmission
errors on a particular interface that are not otherwise counted."
REFERENCE
"IEEE 802.3 Layer Management"
::= { dot3StatsEntry 10 }

    dot3StatsCarrierSenseErrors   OBJECT-TYPE
         SYNTAX    Counter32
         MAX-ACCESS    read-only
         STATUS    current
         DESCRIPTION
         "The number of times that the carrier sense
         condition was lost or never asserted when
         attempting to transmit a frame on a particular
         interface.

The count represented by an instance of this
object is incremented at most once per transmission attempt, even if the carrier sense condition fluctuates during a transmission
attempt."
REFERENCE
"IEEE 802.3 Layer Management"
::= { dot3StatsEntry 11 }

    -- { dot3StatsEntry 12 } is not assigned
    
    dot3StatsFrameTooLongs   OBJECT-TYPE
         SYNTAX    Counter32
         MAX-ACCESS    read-only
         STATUS    current
         DESCRIPTION
         "A count of frames received on a particular
         interface that exceed the maximum permitted
         frame size.

The count represented by an instance of this
object is incremented when the frameTooLong
status is returned by the MAC service to the
LLC (or other MAC user). Received frames for which multiple error conditions obtain are,
according to the conventions of IEEE 802.3 Layer Management, counted exclusively according
to the error status presented to the LLC."
REFERENCE
"IEEE 802.3 Layer Management"
::= { dot3StatsEntry 13 }

    -- { dot3StatsEntry 14 } is not assigned
    
    -- { dot3StatsEntry 15 } is not assigned
    
    dot3StatsInternalMacReceiveErrors   OBJECT-TYPE
         SYNTAX    Counter32
         MAX-ACCESS    read-only
         STATUS    current
         DESCRIPTION
         "A count of frames for which reception on a
         particular interface fails due to an internal
         MAC sublayer receive error. A frame is only
         counted by an instance of this object if it is
         not counted by the corresponding instance of
         either the dot3StatsFrameTooLongs object, the
         dot3StatsAlignmentErrors object, or the
         dot3StatsFCSErrors object.

The precise meaning of the count represented by an instance of this object is implementation-
specific. In particular, an instance of this
object may represent a count of receive errors
on a particular interface that are not
otherwise counted."
REFERENCE
"IEEE 802.3 Layer Management"
::= { dot3StatsEntry 16 }

    dot3StatsEtherChipSet   OBJECT-TYPE
         SYNTAX        OBJECT IDENTIFIER
         MAX-ACCESS    read-only
         STATUS        current
         DESCRIPTION
         "This object contains an OBJECT IDENTIFIER
         which identifies the chipset used to
         realize the interface. Ethernet-like
         interfaces are typically built out of
         several different chips. The MIB implementor
         is presented with a decision of which chip
         to identify via this object. The implementor
         should identify the chip which is usually
         called the Medium Access Control chip.
         If no such chip is easily identifiable,
         the implementor should identify the chip
         which actually gathers the transmit
         and receive statistics and error
         indications. This would allow a
         manager station to correlate the
         statistics and the chip generating
         them, giving it the ability to take
         into account any known anomalies
         in the chip."
         ::= { dot3StatsEntry 17 }
    
    -- the Ethernet-like Collision Statistics group

-- Implementation of this group is optional; it is appropriate -- for all systems which have the necessary metering

    dot3CollTable   OBJECT-TYPE
         SYNTAX    SEQUENCE OF Dot3CollEntry
         MAX-ACCESS    not-accessible
         STATUS    current
         DESCRIPTION
         "A collection of collision histograms for a
         particular set of interfaces."
         ::= { dot3 5 }
    
    dot3CollEntry   OBJECT-TYPE
         SYNTAX    Dot3CollEntry
         MAX-ACCESS    not-accessible
         STATUS    current
         DESCRIPTION
         "A cell in the histogram of per-frame
         collisions for a particular interface.  An
         instance of this object represents the
         frequency of individual MAC frames for which
         the transmission (successful or otherwise) on a
         particular interface is accompanied by a
         particular number of media collisions."
         INDEX     { ifIndex, dot3CollCount }
         ::= { dot3CollTable 1 }
    
    Dot3CollEntry ::= SEQUENCE {
         dot3CollCount        INTEGER,
         dot3CollFrequencies  Counter32
    }

-- { dot3CollEntry 1 } is no longer in use

    dot3CollCount   OBJECT-TYPE
         SYNTAX    INTEGER (1..16)
         MAX-ACCESS    not-accessible
         STATUS    current
         DESCRIPTION
         "The number of per-frame media collisions for
         which a particular collision histogram cell
         represents the frequency on a particular
         interface."
         ::= { dot3CollEntry 2 }
    
    dot3CollFrequencies   OBJECT-TYPE
         SYNTAX    Counter32
         MAX-ACCESS    read-only
         STATUS    current
         DESCRIPTION
         "A count of individual MAC frames for which the
         transmission (successful or otherwise) on a
         particular interface occurs after the
         frame has experienced exactly the number
         of collisions in the associated
         dot3CollCount object.

For example, a frame which is transmitted
on interface 77 after experiencing
exactly 4 collisions would be indicated
by incrementing only dot3CollFrequencies.77.4.
No other instance of dot3CollFrequencies would be incremented in this example."
::= { dot3CollEntry 3 }

-- 802.3 Tests

    dot3Tests   OBJECT IDENTIFIER ::= { dot3 6 }
    
    dot3Errors  OBJECT IDENTIFIER ::= { dot3 7 }

-- TDR Test

-- The Time-Domain Reflectometry (TDR) test is specific
-- to ethernet-like interfaces with the exception of
-- 10BaseT and 10BaseF. The TDR value may be useful
-- in determining the approximate distance to a cable fault. -- It is advisable to repeat this test to check for a -- consistent resulting TDR value, to verify that there
-- is a fault.

    dot3TestTdr OBJECT IDENTIFIER ::= { dot3Tests 1 }

-- A TDR test returns as its result the time interval, -- measured in 10 MHz ticks or 100 nsec units, between
-- the start of TDR test transmission and the subsequent -- detection of a collision or deassertion of carrier. On -- successful completion of a TDR test, the result is
-- stored as the value of the appropriate instance of the -- MIB object dot3TestTdrValue, and the OBJECT IDENTIFIER
-- of that instanceis stored in the corresponding instance -- of ifExtnsTestCode (thereby indicating where the
-- result has been stored).

    -- Loopback Test

-- Another test is the full-duplex loopback test.
-- This test configures the MAC chip and executes
-- an internal loopback test of memory, data paths,
-- and the MAC chip logic. This loopback test can
-- only be executed if the interface is offline.
-- Once the test has completed, the MAC chip should
-- be reinitialized for network operation, but it

-- should remain offline.

    dot3TestLoopBack OBJECT IDENTIFIER ::= { dot3Tests 2 }

-- If an error occurs during a test, the object
-- ifTestResult (defined in RFC1573) will be set
-- to failed(7). The following two OBJECT
-- IDENTIFIERs may be used to provided more
-- information as values for ifTestCode.

             -- couldn't initialize MAC chip for test
    dot3ErrorInitError     OBJECT IDENTIFIER ::= { dot3Errors 1 }
    
             -- expected data not received (or not
             -- received correctly) in loopback test
    dot3ErrorLoopbackError OBJECT IDENTIFIER ::= { dot3Errors 2 }

-- RFC1573 does away with the interface chipset object.
-- The following OBJECT IDENTIFIER definitions are
-- retained for purposes of backwards compatibility
-- with pre-RFC1573 systems.
-- 802.3 Hardware Chipsets

-- The object ifExtnsChipSet is provided in RFC1229 to -- identify the MAC hardware used to communicate on an -- interface. The following hardware chipsets are
-- provided for 802.3:

    dot3ChipSets          OBJECT IDENTIFIER ::= { dot3 8 }
    dot3ChipSetAMD        OBJECT IDENTIFIER ::= { dot3ChipSets 1 }
    dot3ChipSetAMD7990    OBJECT IDENTIFIER ::= { dot3ChipSetAMD 1 }
    dot3ChipSetAMD79900   OBJECT IDENTIFIER ::= { dot3ChipSetAMD 2 }
    dot3ChipSetAMD79C940  OBJECT IDENTIFIER ::= { dot3ChipSetAMD 3 }
    
    dot3ChipSetIntel      OBJECT IDENTIFIER ::= { dot3ChipSets 2 }
    dot3ChipSetIntel82586 OBJECT IDENTIFIER ::= { dot3ChipSetIntel 1 }
    dot3ChipSetIntel82596 OBJECT IDENTIFIER ::= { dot3ChipSetIntel 2 }
    
    dot3ChipSetSeeq       OBJECT IDENTIFIER ::= { dot3ChipSets 3 }
    dot3ChipSetSeeq8003   OBJECT IDENTIFIER ::= { dot3ChipSetSeeq 1 }
    
    dot3ChipSetNational      OBJECT IDENTIFIER ::= { dot3ChipSets 4 }
    dot3ChipSetNational8390  OBJECT IDENTIFIER ::=
                               { dot3ChipSetNational 1 }
    dot3ChipSetNationalSonic OBJECT IDENTIFIER ::=
                               { dot3ChipSetNational 2 }
    
    dot3ChipSetFujitsu       OBJECT IDENTIFIER ::= { dot3ChipSets 5 }
    dot3ChipSetFujitsu86950  OBJECT IDENTIFIER ::=
                               { dot3ChipSetFujitsu 1 }
    
    dot3ChipSetDigital       OBJECT IDENTIFIER ::= { dot3ChipSets 6 }
    dot3ChipSetDigitalDC21040  OBJECT IDENTIFIER ::=
                               { dot3ChipSetDigital 1 }

-- For those chipsets not represented above, OBJECT IDENTIFIER -- assignment is required in other documentation, e.g., assignment -- within that part of the registration tree delegated to -- individual enterprises (see RFC1155).

   -- conformance information
   
   etherConformance OBJECT IDENTIFIER ::= { etherMIB 2 }
   
   etherGroups      OBJECT IDENTIFIER ::= { etherConformance 1 }
   etherCompliances OBJECT IDENTIFIER ::= { etherConformance 2 }
   
   -- compliance statements

etherCompliance MODULE-COMPLIANCE

       STATUS  current
       DESCRIPTION
     "The compliance statement for SNMPv2 entities which
     have ethernet-like network interfaces."
 
       MODULE  -- this module
 MANDATORY-GROUPS { etherStatsGroup }
 
 GROUP       etherCollisionTableGroup
 DESCRIPTION
     "This group is optional. It is appropriate for
      all systems which have the necessary metering.
      Implementation in such systems is highly
      recommended."
       ::= { etherCompliances 1 }

-- units of conformance

   etherStatsGroup    OBJECT-GROUP
       OBJECTS { dot3StatsIndex, dot3StatsAlignmentErrors,
       dot3StatsFCSErrors,
       dot3StatsSingleCollisionFrames,
       dot3StatsMultipleCollisionFrames,
       dot3StatsSQETestErrors,
       dot3StatsDeferredTransmissions,
   
       dot3StatsLateCollisions,
       dot3StatsExcessiveCollisions,
       dot3StatsInternalMacTransmitErrors,
       dot3StatsCarrierSenseErrors,
       dot3StatsFrameTooLongs,
       dot3StatsInternalMacReceiveErrors,
       dot3StatsEtherChipSet}
       STATUS  current
       DESCRIPTION
     "A collection of objects providing information
     applicable to all ethernet-like network interfaces."
       ::= { etherGroups 1 }

   etherCollisionTableGroup    OBJECT-GROUP
       OBJECTS { dot3CollCount, dot3CollFrequencies }
       STATUS  current
       DESCRIPTION
     "A collection of objects providing a histogram
     of packets successfully transmitted after
     experiencing exactly N collisions."
       ::= { etherGroups 2 }
END

6. Acknowledgements

This document was produced by the Ethernet MIB Working Group.

This document is based on the Proposed Standard Ethernet MIB, RFC 1284 [14], of which Jihn Cook of Chipcom was the editor. The Ethernet MIB Working Group gathered implementation experience of the variables specified in RFC 1284 and used that information to develop this revised MIB.

RFC 1284, in turn, is based on a document written by Frank Kastenholz of Interlan entitled IEEE 802.3 Layer Management Draft M compatible MIB for TCP/IP Networks [10]. This document has been modestly reworked, initially by the SNMP Working Group, and then by the Transmission Working Group, to reflect the current conventions for defining objects for MIB interfaces. James Davin, of the MIT Laboratory for Computer Science, and Keith McCloghrie of Hughes LAN Systems, contributed to later drafts of this memo. Marshall Rose of Performance Systems International, Inc. converted the document into its current concise format. Anil Rijsinghani of DEC contributed text that more adequately describes the TDR test. Thanks to Frank Kastenholz of Interlan and Louis Steinberg of IBM for their experimentation.

7. References

   [1] Cerf, V., "IAB Recommendations for the Development of Internet
       Network Management Standards", RFC 1052, NRI, April 1988.
   
   [2] Cerf, V., "Report of the Second Ad Hoc Network Management Review
       Group," RFC 1109, NRI, August 1989.
   
   [3] Rose M., and K. McCloghrie, "Structure and Identification of
       Management Information for TCP/IP-based internets", STD 16, RFC
       1155, Performance Systems International, Hughes LAN Systems, May
       1990.
   
   [4] McCloghrie K., and M. Rose, "Management Information Base for
       Network Management of TCP/IP-based internets", RFC 1156, Hughes
       LAN Systems, Performance Systems International, May 1990.
   
   [5] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
       Network Management Protocol", STD 15, RFC 1157, SNMP Research,
       Performance Systems International, Performance Systems
       International, MIT Laboratory for Computer Science, May 1990.
   
   [6] McCloghrie K., and M. Rose, Editors, "Management Information Base
       for Network Management of TCP/IP-based internets", STD 17, RFC
       1213, Performance Systems International, March 1991.
   
   [7] Information processing systems - Open Systems Interconnection -
       Specification of Abstract Syntax Notation One (ASN.1),
       International Organization for Standardization, International
       Standard 8824, December 1987.
   
   [8] Information processing systems - Open Systems Interconnection -
       Specification of Basic Encoding Rules for Abstract Notation One
       (ASN.1), International Organization for Standardization,
       International Standard 8825, December 1987.

[9] IEEE, IEEE 802.3 Layer Management, November 1988.

  [10] Kastenholz, F., "IEEE 802.3 Layer Management Draft compatible MIB
       for TCP/IP Networks", electronic mail message to mib-
       [email protected], 9 June 1989.
  
  [11] McCloghrie, K., Editor, "Extensions to the Generic-Interface MIB,
       RFC 1229, Hughes LAN Systems", Inc., May 1991.

[12] IEEE, Carrier Sense Multiple Access with Collision Detection

(CSMA/CD) Access Method and Physical Layer Specifications, ANSI/IEEE Std 802.3-1985.

  [13] Rose, M., and K. McCloghrie, Editors, "Concise MIB Definitions",
       STD 16, RFC 1212, Performance Systems International, Hughes LAN
       Systems, March 1991.
  
  [14] Cook, J., "Definitions of Managed Objects for Ethernet-Like
       Interface Types", RFC 1284, Chipcom Corporation, December 1991.
  
  [15] Kastenholz, F., "Definitions of Managed Objects for the
       Ethernet-like Interface Types", RFC 1398, FTP Software, Inc.,
       January 1993.
  
  [16] Case, J., McCloghrie, K. Rose, M, and S. Waldbusser, "Structure
       of Management Information for Version 2 of the Simple Network
       Management Protocol (SNMPv2)", RFC 1442, SNMP Research, Inc.,
       Hughes LAN Systems, Dover Beach Consulting, Inc., Carnegie Mellon
       University, April 1993.
  
  [17] Davin, J., and K. McCloghrie, "Administrative Model for Version 2
       of the Simple Network Management Protocol (SNMPv2)", RFC 1445,
       Trusted Information Systems, Hughes LAN Systems, April 1993.
  
  [18] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Protocol
       Operations for Version 2 of the Simple Network Management
       Protocol (SNMPv2)", RFC 1448, SNMP Research, Inc., Hughes LAN
       Systems, Dover Beach Consulting, Inc., Carnegie Mellon
       University, April 1993.
  
  [19] McCloghrie, K., and F. Kastenholz, "Evolution of the Interfaces
       Group of MIB-II RFC 1573", Hughes LAN Systems, FTP Software,
       January 1994.

8. Security Considerations

Security issues are not discussed in this memo.

9. Author's Address

Frank Kastenholz
FTP Software, Inc.
2 High Street
North Andover, Mass, USA 01845

   Phone: 508-685-4000
   EMail: [email protected]